24. INDIKATOR, ROULT

Indikator Asam-Basa

Halaman ini menggambarkan bagaimana indikator asam-basa bekerja, dan bagaimana pemilihan indikator yang tepat untuk titrasi tertentu.

Bagaimanakah cara kerja indikator

Indikator sebagai asam lemah

Lakmus

Lakmus adalah asam lemah. Lakmus memiliki molekul yang sungguh rumit yang akan kita sederhanakan menjadi HLit. “H” adalah proton yang dapat diberikan kepada yang lain. “Lit” adalah molekul asam lemah.

Tidak dapat dipungkiri bahwa akan terjadi kesetimbangan ketika asam ini dilarutkan dalam air. Pengambilan versi yang disederhanakan kesetimbangan ini:

Lakmus yang tidak terionisasi adalah merah, ketika terionisasi adalah biru.

Sekarang gunakan Prinsip Le Chatelier untuk menemukan apa yang terjadi jika anda menambahkan ion hidroksida atau beberapa ion hidrogen yang lebih banyak pada kesetimbangan ini.

Penambahan ion hidroksida:

Penambahan ion hidrogen:

Jika konsentrasi Hlit dan Lit sebanding:

Pada beberapa titik selama terjadi pergerakan posisi kesetimbangan, konsentrasi dari kedua warna akan menjadi sebanding. Warna yang anda lihat merupakan pencampuran dari keduanya.

Alasan untuk membubuhkan tanda kutip disekitar kata “netral” adalah bahwa tidak terdapat alasan yang tepat kenapa kedua konsentrasi menjadi sebanding pada pH 7. Untuk lakmus, terjadi perbandingan warna mendekati 50 / 50 pada saat pH 7 – hal itulah yang menjadi alasan kenapa lakmus banyak digunakan untuk pengujian asam dan basa. Seperti yang akan anda lihat pada bagian berikutnya, hal itu tidak benar untuk indikator yang lain.

Jingga metil (Methyl orange)

Jingga metil adalah salah satu indikator yang banyak digunakan dalam titrasi. Pada larutan yang bersifat basa, jingga metil berwarna kuning dan strukturnya adalah:

Sekarang, anda mungkin berfikir bahwa ketika anda menambahkan asam, ion hidrogen akan ditangkap oleh yang bermuatan negatif oksigen. Itulah tempat yang jelas untuk memulainya. Tidak begitu!

Pada faktanya, ion hidrogen tertarik pada salah satu ion nitrogen pada ikatan rangkap nitrogen-nitrogen untuk memberikan struktur yang dapat dituliskan seperti berikut ini:

Anda memiliki kesetimbangan yang sama antara dua bentuk jingga metil seperti pada kasus lakmus – tetapi warnanya berbeda.

Anda sebaiknya mencari sendiri kenapa terjadi perubahan warna ketika anda menambahkan asam atau basa. Penjelasannya identik dengan kasus lakmus – bedanya adalah warna.

Pada kasus jingga metil, pada setengah tingkat dimana campuran merah dan kuning menghasilkan warna jingga terjadi pada pH 3.7 – mendekati netral. Ini akan diekplorasi dengan lebih lanjut pada bagian bawah halaman.

Fenolftalein

Fenolftalein adalah indikator titrasi yang lain yang sering digunakan, dan fenolftalein ini merupakan bentuk asam lemah yang lain.

Pada kasus ini, asam lemah tidak berwarna dan ion-nya berwarna merah muda terang. Penambahan ion hidrogen berlebih menggeser posisi kesetimbangan ke arah kiri, dan mengubah indikator menjadi tak berwarna. Penambahan ion hidroksida menghilangkan ion hidrogen dari kesetimbangan yang mengarah ke kanan untuk menggantikannya – mengubah indikator menjadi merah muda.

Setengah tingkat terjadi pada pH 9.3. Karena pencampuran warna merah muda dan tak berwarna menghasilkan warna merah muda yang pucat, hal ini sulit untuk mendeteksinya dengan akurat!

Rentang pH indikator

Pentingnya pKind

Berpikirlah tentang indikator yang umum, HInd – dimana “Ind” adalah bagian indikator yang terlepas dari ion hidrogen yang diberikan keluar:

Karena hal ini hanya seperti asam lemah yang lain, anda dapat menuliskan ungkapan Ka untuk indikator tersebut. Kita akan menyebutnya Kind untuk memberikan penekanan bahwa yang kita bicarakan di sini adalah mengenai indikator.

Pikirkanlah apa yang terjadi pada setengah reaksi selama terjadinya perubahan warna. Pada titik ini konsentrasi asam dan ion-nya adalah sebanding. Pada kasus tersebut, keduanya akan menghapuskan ungkapan Kind.

anda dapat menggunakan hal ini untuk menentukan pH pada titik reaksi searah. Jika anda menyusun ulang persamaan yang terakhir pada bagian sebelah kiri, dan kemudian mengubahnya pada pH dan pKind, anda akan memperoleh:

Hal itu berarti bahwa titik akhir untuk indikator bergantung seluruhnya pada harga pKind. Untuk indikator yang kita miliki dapat dilihat dibawah ini:

indikator pKind
lakmus 6.5
jingga metil 3.7
fenolftalein 9.3

Rentang pH indikator

Indikator tidak berubah warna dengan sangat mencolok pada satu pH tertentu (diberikan oleh harga pKind-nya). Malahan, mereka mengubah sedikit rentang pH.

Dengan mengasumsikan kesetimbangan benar-benar mengarah pada salah satu sisi, tetapi sekarang anda menambahkan sesuatu untuk memulai pergeseran tersebut. Selama terjadi pergeseran kesetimbangan, anda akan memulai untuk mendapatkan lebih banyak dan lebih banyak lagi pembentukan warna yang kedua, dan pada beberapa titik mata akan mulai mendeteksinya.

Sebagai contoh, jika anda menggunakan jingga metil pada larutan yang bersifat basa maka warna yang dominan adalah kuning. Sekarang mulai tambahkan asam karena itu kesetimbangan akan mulai bergeser.

Pada beberapa titik akan cukup banyak adanya bentuk merah dari jingga metil yang menunjukkan bahwa larutan akan mulai memberi warna jingga. Selama anda melakukan penambahan asam lebih banyak, warna merah akhirnya akan menjadi dominan yang mana anda tidak lagi melihat warna kuning.

Terjadi perubahan kecil yang berangsur-angsur dari satu warna menjadi warna yang lain, menempati rentang pH. Secara kasar “aturan ibu jari”, perubahan yang tampak menempati sekitar 1 unit pH pada tiap sisi harga pKind.

Harga yang pasti untuk tiga indikator dapat kita lihat sebagai berikut:

indikator pKind pH rentang pH
lakmus 6.5 5 – 8
jingga metil 3.7 3.1 – 4.4
fenolftalein 9.3 8.3 – 10.0

Perubahan warna lakmus terjadi tidak selalu pada rentang pH yang besar, tetapi lakmus berguna untuk mendeteksi asam dan basa pada lab karena perubahan warnanya sekitar 7. Jingga metil atau fenolftalein sedikit kurang berguna.

Berikut ini dapat dilihat dengan lebih mudah dalam bentuk diagram.

Sebagai contoh, jingga metil akan berwarna kuning pada tiap larutan dengan pH lebih besar dari 4.4. Hal ini tidak dapat dibedakan antara asam lemah dengan pH 5 atau basa kuat dengan pH 14.

Pemilihan indikator untuk titrasi

Harus diingat bahwa titik ekivalen titrasi yang mana anda memiliki campuran dua zat pada perbandingan yang tepat sama. anda tak pelak lagi membutuhkan pemilihan indikator yang perubahan warnanya mendekati titik ekivalen. Indikator yang dipilih bervariasi dari satu titrasi ke titirasi yang lain.

Asam kuat vs basa kuat

Diagram berikut menunjukkan kurva pH untuk penambahan asam kuat pada basa kuat. Bagian yang diarsir pada gambar tersebut adalah rentang pH untuk jingga metil dan fenolftalein.

anda dapat melihat bahwa tidak terdapat perubahan indikator pada titik ekivalen.

Akan tetapi, gambar menurun tajam pada titik ekivalen tersebut yang menunjukkan tidak terdapat perbedaan pada volume asam yang ditambahkan apapun indikator yang anda pilih. Akan tetapi, hal tersebut berguna pada titrasi untuk memilihih kemungkinan warna terbaik melalui penggunaan tiap indikator.

Jika anda mengguanakan fenolftalein, anda akan mentitrasi sampai fenolftalein berubah menjadi tak berwarna (pada pH 8,8) karena itu adalah titik terdekat untuk mendapatkan titik ekivalen.

Dilain pihak, dengan menggunakan jingga metil, anda akan mentitrasi sampai bagian pertama kali muncul warna jingga dalam larutan. Jika larutan berubah menjadi merah, anda mendapatkan titik yang lebih jauh dari titik ekivalen.

Asam kuat vs basa lemah

Kali ini adalah sangat jelas bahwa fenolftalein akan lebih tidak berguna. Akan tetapi jingga metil mulai berubah dari kuning menjadi jingga sangat mendekati titik ekivalen.

anda memiliki pilihan indiaktor yang berubah warna pada bagian kurva yang curam.

Asam lemah vs basa kuat

Kali ini, jingga metil sia-sia! Akan tetapi, fenolftalein berubah warna dengan tepat pada tempat yang anda inginkan.

Asam lemah vs basa lemah

Kurva berikut adalah untuk kasus dimana asam dan basa keduanya sebanding lemahnya – sebagai contoh, asam etanoat dan larutan amonia. Pada kasus yang lain, titik ekivalen akan terletak pada pH yang lain.

Anda dapat melihat bahwa kedua indikator tidak dapat digunakan. Fenolftalein akan berakhir perubahannya sebelum tercapai titik ekivalen, dan jingga metil jauh ke bawah sekali.

Ini memungkinkan untuk menemukan indiaktor yang memulai perubahan warna atau mengakhirinya pada titik eqivalen, karena pH titik ekivalen berbeda dari kasus yang satu ke kasus yang lain, anda tidak dapat mengeneralisirnya.

Secara keseluruhan, anda tidak akan pernah mentitrasi asam lemah dan asam basa melalui adanya indikator.

Larutan natrium karbonat dan asam hidroklorida encer

Berikut ini adalah kasus yang menarik. Jika anda menggunakan fenolftalein atau jingga metil, keduanya akan memberikan hasil titirasi yang benar – akan tetapi harga dengan fenolftalein akan lebih tepat dibandingkan dengan bagian jingga metil yang lain.

Hal ini terjadi bahwa fenolftalein selesai mengalami perubahan warnanya pada pH yang tepat dengan titik ekivalen pada saat untuk pertamakalinya natrium hidrogenkarbonat terbentuk.

Perubahan warna jingga metil dengan tepat terjadi pada pH titik ekivalen bagian kedua reaksi.


Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

Larutan Penyangga

Halaman ini menggambarkan larutan penyangga yang bersifat asam dan larutan penyangga yang bersifat basa yang sederhana dan menjelaskan bagaimana cara kerja larutan penyangga tersebut.

Apakah yang dimaksud dengan larutan penyangga?

Definisi

Larutan penyangga adalah satu zat yang menahan perubahan pH ketika sejumlah kecil asam atau basa ditambahkan kedalamnya.

Larutan penyangga yang bersifat asam

Larutan penyangga yang bersifat asam adalah sesuatu yang memiliki pH kurang dari 7. Larutan penyangga yang bersifat asam biasanya terbuat dari asam lemah dan garammya – acapkali garam natrium.

Contoh yang biasa merupakan campuran asam etanoat dan natrium etanoat dalam larutan. Pada kasus ini, jika larutan mengandung konsentrasi molar yang sebanding antara asam dan garam, maka campuran tersebut akan memiliki pH 4.76. Ini bukan suatu masalah dalam hal konsentrasinya, sepanjang keduanya memiliki konsentrasi yang sama.

Anda dapat mengubah pH larutan penyangga dengan mengubah rasio asam terhadap garam, atau dengan memilih asam yang berbeda dan salah satu garamnya.

Larutan penyangga yang bersifat basa

larutan penyangga yang bersifat basa memiliki pH diatas 7. Larutan penyangga yang bersifat basa biasanya terbuat dari basa lemah dan garamnya.

Seringkali yang digunakan sebagai contoh adalah campuran larutan amonia dan larutan amonium klorida. Jika keduanya dalam keadaan perbandingan molar yang sebanding, larutan akan memiliki pH 9.25. Sekali lagi, hal itu bukanlah suatu masalah selama konsentrasi yang anda pilih keduanya sama.

Bagaimana cara larutan penyangga bekerja?

Larutan penyangga mengandung sesuatu yang akan menghilangkan ion hidrogen atau ion hidroksida yang mana anda mungkin menambahkannya – sebaliknya akan merubah pH. Larutan penyangga yang bersifat asam dan basa mencapai kondisi ini melalui cara yang berbeda.

Larutan penyangga yang bersifat asam

Kita akan mengambil campuran asam etanoat dan natrium etanoat sebagai contoh yang khas.

Asam etanoat adalah asam lemah, dan posisi kesetimbangan akan bergeser ke arah kiri:

Penambahan natrium etanoat pada kondisi ini menambah kelebihan ion etanoat dalam jumlah yang banyak. Berdasarkan Prinsip Le Chatelier, ujung posisi kesetimbangan selanjutnya bergeser ke arah kiri.

Karena itu larutan akan mengandung sesuatu hal yang penting:

  • Banyak asam etanoat yang tidak terionisasi;
  • Banyak ion etanoat dari natrium etanoat:
  • Cukup ion hidrogen untuk membuat larutan menjadi bersifat asam.

Sesuatu hal yang lain (seperti air dan ion natrium) yang ada tidak penting pada penjelasan.

Penambahan asam pada larutan penyangga yang bersifat asam

Larutan penyangga harus menghilangkan sebagian besar ion hidrogen yang baru sebaliknya pH akan turun dengan mencolok sekali.

Ion hidrogen bergabung dengan ion etanoat untuk menghasilkan asam etanoat. Meskipun reaksi berlangsung reversibel, karena asam etanoat adalah asam lemah, sebagaian besar ion hidrogen yang baru dihilangkan melalui cara ini.

Karena sebagian besar ion hidrogen yang baru dihilangkan, pH tidak akan berubah terlalu banyak – tetapi karena kesetimbangan ikut terlibat, pH akan sedikit menurun.

Penambahan basa pada larutan penyangga yang bersifat asam

Larutan basa mengandung ion hidroksida dan larutan penyangga menghilangkan ion hidroksida tersebut.

Kali ini situasinya sedikit lebih rumit karena terdapat dua proses yang dapat menghilangkan ion hidroksida.

Penghilangan ion hidroksida melalui reaksi dengan asam etanoat

Sebagian besar zat yang bersifat asam yang mana ion hidroksida bertumbukan dengan molekul asam etanoat. Keduanya akan bereaksi untuk membentuk ion etanoat dan air.

Karena sebagian besar ion hidroksida dihilangkan, pH tidak berubah terlalu besar.

Penghilangan ion hidroksida melalui reaksi dengan ion hidrogen

Harus diingat bahwa beberapa ion hidrogen yang ada berasal dari ionisasi asam aetanoat.

Ion hidroksida dapat bergabung dengannya untuk membentuk air. Selama hal itu terjadi, ujung kesetimbangan menggantikannya. Hal ini tetap terjadi sampai sebagian besar ion hidrogen dihilangkan.

Sekali lagi, karena anda memiliki kesetimbangan yang terlibat, tidak semua ion hidroksida dihilangkan – karena terlalu banyak. Air yang terbentuk terionisasi kembali menjadi tingat yang sangat kecil untuk memberikan beberapa ion hidrogen dan ion hidroksida.

Larutan penyangga yang bersifat basa

Kita akan menganbil campuran larutan amonia dan amonium klorida sebagai contoh yang khas.

Amonia adalah basa lemah, dan posisi kesetimbangan akan bergerak ke arah kiri:

Penambahan amonium klorida pada kondisi ini menambahkan kelebihan ion amonium dalam jumlah yang banyak. Berdasarkan Prinsip Le Chatelier, hal itu akan menyebabkan ujung posisi kesetimbangan akan bergeser ke arah kiri.

Karena itu larutan akan mengandung beberapa hal yang penting:

  • Banyak amonia yang tidak bereaksi;
  • Banyak ion amonia dari amonium klorida;
  • Cukup ion hidrogen untuk menghasilkan larutan yang bersifat basa.

Hal lain (seperti air dan ion klorida) yang ada tidak penting pada penjelasan.

Penambahan asam pada larutan penyangga yang bersifat basa

Terdapat dua proses yang dapat menghilangkan ion hidrogen yang anda tambahkan.

Penghilangan ion hidrogen melalui reaksi dengan amonia

Sebagian besar zat dasar yang mana ion hidrogen bertumbukan dengannya adalah molekul amonia. Keduanya akan bereaksi untuk membentuk ion amonium.

Sebagian besar, tetapi tidak seluruhnya, ion hidrogen akan dihilangkan. Ion amonium bersifat asam yang sedikit lemah, dan karena itu ion hidrohen akan dilepaskan kembali.

Penghilangan ion hidrogen melalui reaksi dengan ion hidroksida

Harus diingat bahwa beberepa ion hidroksida yang ada berasal dari reaksi antara amonia dan air.

Ion hidrogen dapat bergabung dengan ion hidroksida tersebut untuk menghasilkan air. Selama hal itu terjadi, ujung kesetimbangan menggantikan ion hidroksida. Hal ini terus terjadi sampai sebagian besar ion hidrogen dihilangkan.

Sekali lagi, karena anda memiliki kesetimbangan yang terlibat, tidak semua ion hidrogen dihilangkan – hanya sebagian besar.

Penambahan basa pada larutan penyangga yang bersifat basa

Ion hidroksida dari alkali dihilangkan melali reaksi yang sederhana dengan ion amonium.

Karena amonia yang terbentuk merupakan basa lemah, amonia akan bereaksi dengan air – dan karena itu reaksi sedikit reversibel. Hal ini berarti bahwa, sekali lagi, sebagian besar (tetapi tidak semuanya) ion hidrogen dihilangkan dari larutan.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

Hukum Raoult dan Campuran Larutan Ideal.

Bagian ini mengupas hukum Raoult dan bagaimana aplikasinya pada campuran dari dua larutan yang dapat menguap. Di sini akan dibahas kasus campuran di mana dua jenis larutan dapat sepenuhnya menyatu dalam berbagai proporsi dan BUKAN campuran di mana larutan yang satu berada di atas yang lainnya (larutan yang tidak dapat menyatu sepenuhnya)

Bagian ini menjelaskan apa yang dimaksud dengan campuran ideal dan melihat bagaimana diagram fase campuran demikian dibuat dan digunakan.

Campuran Ideal

Campuran ideal adalah sebuah campuran yang menaati hukum Raoult. Mari kita lihat karakter sebuah campuran ideal sebelum membahas Hukum Raoult, karena dengan demikian akan lebih mudah bagi kita untuk mengerti topik kali ini.

Contoh campuran ideal

Sebenarnya tidak ada campuran yang bisa dibilang ideal. Tapi beberapa campuran larutan kondisinya benar-benar mendekati keadaan yang ideal. Berikut ini adalah contohnya:
* hexane dan heptane
* benzene dan methylbenzene
* propan-1-ol dan propan-2-ol

Campuran ideal dan gaya intermolekuler

Dalam sebuah larutan, beberapa molekul yang berenergi besar dapat menggunakan energinya untuk mengalahkan daya tarik intermolekuler permukaan cairan dan melepaskan diri untuk kemudian menjadi uap.

Semakin kecil daya intermolekuler, semakin banyak molekul yang dapat melepaskan diri pada suhu tertentu.

Apabila anda mempunyai larutan kedua, hal yang sama juga terjadi. Pada suhu tertentu, sebagian dari molekul-molekul yang ada akan mempunyai energi yang cukup untuk melepaskan diri dari permukaan larutan.

Pada sebuah campuran ideal dari kedua larutan ini, kecenderungan dari dua macam molekul di dalamnya untuk melepaskan diri tidak berubah.

Anda mungkin berpikir bahwa diagram ini hanya menunjukkan separuh dari seluruh molekul yang melepaskan diri, tapi sebenarnya proporsi dari kedua jenis molekul yang melepaskan diri masih sama. Diagram ini menunjukkan campuran 50/50 dari dua larutan. Yang berarti bahwa hanya ada separuh dari tiap jenis molekul yang berada di permukaan campuran larutan dibanding jumlah tiap jenis molekul pada permukaan larutan awalnya. Apabila proporsi dari tiap jenis molekul yang melepaskan diri tetap sama, tentu saja hanya ada separuh dari tiap jenis molekul yang dapat melepaskan diri dari campuran larutan pada suatu waktu tertentu.

Apabila molekul-molekul merah masih mempunyai kecenderungan yang sama untuk melepaskan diri sebesar sebelumnya, ini berarti daya intermolekuler antara dua molekul merah persis sama dengan besar daya intermolekuler antara sebuah molekul merah dan sebuah molekul biru.

Apabila daya tersebut berubah, kecenderungan molekul untuk melepaskan diri juga akan berubah.

Demikian halnya dengan daya antara dua molekul biru dan daya antara sebuah molekul biru dan sebuah molekul merah. Daya tersebut juga harus sama dan kalau tidak, kecenderungan molekul biru untuk melepaskan diri juga akan berubah.

Apabila anda dapat mengikuti penjelasan ini, anda akan mengerti bahwa daya tarik intermolekuler antara dua molekul merah, dua molekul biru dan antara sebuah molekul merah dan sebuah molekul biru akan persis sama dalam campuran ideal.

Inilah sebabnya mengapa campuran seperti hexane dan heptane mendekati campuran ideal. Mereka memiliki besar molekul yang hampir sama dan mempunyai daya tarik Van der Waals yang sama di antara mereka. Namun begitu, tetap saja, besar molekul keduanya tidak persis sama, sehingga walaupun campuran ini mendekati campuran ideal, tetap saja bukan merupakan campuran ideal.

Campuran ideal dan perubahan entalpi pada proses pencampuran

Ketika anda membuat suatu campuran larutan-larutan, anda harus mengalahkan daya tarik intermolekuler (yang membutuhkan energi) dan membuat daya tarik baru (yang menghasilkan energi).

Apabila besar semua daya tarik ini sama, tidak akan ada panas yang dihasilkan atau panas yang diserap.

Ini berarti, campuran ideal dari dua larutan akan mempunyai nol energi entalpi. Apabila suhu campuran naik atau turun pada saat anda mencampur keduanya, ini berarti campuran tersebut bukan campuran ideal.

Hukum Raoult

Anda mungkin pernah melihat sekilas hukum Raoult yang telah disederhanakan apabila anda pernah mempelajari efek dari larutan yang tidak dapat menguap seperti garam pada tekanan uap di pelarut seperti air. Definisi di bawah ini adalah yang biasa dipakai dalam pembicaraan mengenai campuran dua larutan yang bisa menguap.

Tekanan uap parsial dari sebuah komponen di dalam campuran adalah sama dengan tekanan uap komponen tersebut dalam keadaan murni pada suhu tertentu dikalikan dengan fraksi molnya dalam campuran tersebut.

Hukum Raoult hanya dapat diaplikasikan pada campuran ideal.

Persamaan untuk campuran dari larutan A dan B, akan menjadi demikian:

Pada persamaan ini PA dan PB adalah tekanan uap parsial dari komponen A dan B. Dalam suatu campuran gas, tiap gas mempunyai tekanan uapnya sendiri, dan ini disebut tekanan parsial yang independent. Bahkan apabila anda memisahkan semua jenis gas-gas lain yang ada, satu-satunya jenis gas yang tersisa akan masih mempunyai tekanan parsialnya.

Tekanan uap total dari sebuah campuran adalah sama dengan jumlah dari tekanan parsial individu tiap gas.

Po adalah tekanan uap dari A dan B apabila keduanya berada dalam keadaan terpisah (dalam larutan murni).

xA dan xB adalah fraksi mol A dan B. Keduanya adalah fraksi (bagian/proporsi) dari jumlah total mol (A maupun B) yang ada.

Anda dapat menghitung fraksi mol dengan rumus ini:

Contoh:

Seandainya anda memiliki campuran dari 2 mol methanol dan 1 mol etanol pada suhu tertentu, tekanan uap methanol murni pada suhu ini aalah 81kPa dan etanol murni adalah 45kPa.

Pada campuran ini, ada 3 mol molekul.

2 mol dari total 3 mol ini adalah metanol sehingga fraksi mol metanol adalah 2/3.

Dan fraksi mol etanol, dengan demikan adalah 1/3.

Anda dapat menghitung tekanan uap parsial dengan menggunakan hukum Raoult dengan menganggap bahwa campuran methanol dan etanol ini adalah campuran ideal.

Tekanan parsial metanol:

Tekanan parsial etanol:

Tekanan uap total dari campuran larutan ini adalah jumlah tekanan parsial dari keduanya.

Tekanan uap / diagram komposisi

Seandainya anda mempunyai sebuah campuran ideal dari dua larutan yaitu A dan B, kedua larutan ini akan memberi “sumbangan”-nya masing-masing pada tekanan uap keseluruhan pada campuran seperti yang telah kita lihat pada contoh di atas.

Mari kita lihat larutan A secara khusus sebagai contoh:

Anggap saja anda melipat-duakan fraksi mol larutan A dalam campuran (dalam suhu yang sama). Menurut hukum Raoult, tekanan uapnya juga akan ikut terlipat duakan. Apabila anda melipat-tigakan fraksi mol A, anda juga otomatis melipat-tigakan tekanan uapnya, dan seterusnya.

Dengan kata lain, tekanan uap parsial A pada suhu tertentu berbanding lurus dengan fraksi mol-nya. Apabila anda menggambar grafik tekanan uap parsial terhadap fraksi mol-nya, anda akan memperoleh sebuah garis lurus.

Sekarang, mari kita buat grafik yang sama untuk B pada sumbu yang sama. Fraksi mol B mengecil sejalan dengan meningkatnya fraksi mol A sehingga grafik untuk B berbentuk garis yang menurun ke kanan. Bersamaan dengan berkurangnya fraksi mol B, tekanan parsial uapnya juga berkurang dengan kecepatan yang sama.

Perhatikan bahwa tekanan uap larutan B murni lebih tinggi dari larutan A murni. Ini berarti molekul-molekul pada permukaan larutan B lebih mudah melepaskan diri daripada molekul-molekul pada larutan A. Larutan B lebih mudah menguap daripada larutan A.

Untuk memperoleh tekanan uap total dari sebuah campuran, anda harus menjumlahkan tekanan parsial A dan B pada tiap komposisi. Dengan demikian anda akan memperoleh garis lurus seperti pada diagram berikut.

Pada campuran yang non-ideal, garis lurus ini akan berbentuk kurva. Untuk campuran yang mendekati ideal garisnya akan menyerupai garis lurus. Semakin kurang ideal sebuah campuran, semakin berkurvalah garis yang terbentuk.

Titik didih / diagram komposisi

Hubungan antara titik didih dan tekanan uap

Apabila sebuah larutan mempunyai tekanan uap yang tinggi pada sebuah suhu, ini berarti bahwa molekul-molekul yang berada dalam larutan tersebut sedang melepaskan diri dari permukaan larutan dengan mudahnya.

Apabila pada suhu yang sama, sebuah larutan lain mempunyai tekanan uap yang rendah, ini berarti bahwa molekul-molekul dalam larutan tersebut tidak dapat dengan mudah melepaskan diri.

Apa efek dari kedua fakta ini terhadap titik didih dari kedua larutan ini?

Ada dua cara untuk melihat hal ini, pilihlah yang termudah untuk anda.

1. Apabila molekul-molekul dalam larutan sedang melepaskan diri dengan mudahnya dari permukaan larutan, ini berarti bahwa daya tarik intermolekuler relatif lemah. Dengan demikian, anda tidak perlu memanaskannya dengan suhu terlalu tinggi untuk memutuskan semua daya tarik intermolekuler tersebut dan membuat larutan ini mendidih.

Larutan dengan tekanan uap yang lebih tinggi pada suatu suhu tertentu adalah larutan yang titik didihnya lebih rendah.

2. Larutan akan mendidih ketika tekanan uapnya menjadi sama dengan tekanan udara luar. Apabila sebuah larutan mempunyai tekanan uap yang tinggi pada suhu tertentu, anda tidak perlu menambah tekanan uapnya supaya menjadi sama dengan tekanan udara luar. Di lain pihak, apabila tekanan uapnya rendah, anda harus meningkatkan tekanan uapnya setinggi-tingginya sampai besarnya menjadi sama dengan tekanan udara luar.

Larutan dengan tekanan uap yang lebih tinggi pada suatu suhu tertentu adalah larutan yang titik didihnya lebih rendah.Sekali lagi, dua larutan pada suhu yang sama:Larutan dengan tekanan uap yang lebih tinggi adalah larutan yang titik didihnya lebih rendah.

Menghitung titik didih/membuat diagram komposisi

Pada bagian yang sebelumnya, kita telah melihat diagram komposisi seperti di bawah ini:

Kita akan mengubah diagram ini menjadi diagram komposisi/titik didih.

Kita akan mulai dengan titik didih dari larutan murni A dan larutan murni B.

B memiliki tekanan uap yang lebih tinggi. Ini berarti bahwa larutan B mempunyai titik didih yang lebih rendah dari larutan A.

Pada campuran larutan A dan B, anda mungkin telah menduga bahwa titik-titik didih keduanya akan membentuk sebuah garis lurus yang menghubungkan kedua titik didih ini.Pada kenyataannya, tidak demikian! Bukan garis lurus, tapi garis kurvalah yang terbentuk.

Kita akan menambah sebuah garis lagi pada diagram ini yang akan menunjukkan komposisi uap pada larutan yang mendidih.

Apabila anda mendidihkan sebuah campuran larutan, larutan yang lebih mudah menguap, tentunya akan membentuk lebih banyak uap daripada larutan yang sukar menguap.

Ini berarti, akan ada lebih banyak komponen B (komponen yang lebih mudah menguap) terdapat dalam uap daripada dalam larutannya. Anda dapat membuktikannya dengan memadatkan udap yang didapat dan menganalisanya. Diagram ini menunjukkan apa yang terjadi bila anda mendidihkan campuran larutan A dan B.

Perhatikan bahwa ada lebih banyak uap larutan B daripada uap larutan A yang ada di atas campuran larutan yang mendidih ini karena larutan B lebih mudah menguap.

Apabila anda mengulangi proses ini dengan campuran larutan dengan berbagai komposisi, anda akan dapat menggambar kurva kedua, yaitu garis komposisi uap.

Ini adalah diagram fase kita yang terakhir

Menggunakan diagram komposisi

Diagram ini dapat digunakan dengan cara yang persis sama seperti dengan cara pembentukannya. Apabila anda mendidihkan campuran larutan, anda dapat mendapatkan titik didihnya dan komposisi uap di atas larutan yang mendidih ini.

Sebagai contoh, pada diagram berikut ini, apabila anda mendidihkan campuran larutan C1, titik didihnya adalah T1 dan komposisi uapnya adalah C2.

Yang harus anda lakukan hanyalah menggunakan kurva komposisi larutan untuk mencari titik didih larutan dan melihat pada grafik ini, bagaimana komposisi uap pada suhu tersebut (titik didih).

Perhatikan sekali lagi bahwa ada lebih banyak uap larutan B daripada uap larutan A yang ada di atas campuran larutan yang mendidih ini karena larutan B lebih mudah menguap.

Permulaan dari distilasi fraksional

Umpamanya anda mengumpulkan semua uap yang ada di atas larutan yang mendidih dan anda didihkan untuk kedua kalinya.

Ini berarti, sekarang anda mendidihkan larutan baru yang komposisinya adalah C2.

Larutan ini akan mendidih pada temperatur baru yaitu T2, dan uap yang berada di atas larutan baru ini akan mempunyai komposisi C3.

Anda dapat melihat sekarang bahwa kita mempunyai uap yang hampir merupakan komponen B murni.

Apabila anda terus melakukan hal ini (mengkondensasi uap dan mendidihkan cairan yang terbentuk) , pada akhirnya anda akan mendapatkan larutan B murni.Ini adalah dasar dari distilasi fraksional. Walaupun begitu, melakukannya dengan cara seperti ini akan sangat melelahkan dan kecuali anda dapat memproduksi dan mengkondensasi uap di atas sebuah larutan mendidih dalam jumlah yang luar biasa banyak, jumlah larutan B yang akan anda dapat pada akhirnya akan sangat sedikit.

Kolom fraksional sesungguhnya (baik di laboratorium ataupun di industri) melakukan proses kondensasi dan pendidihan ulang ini secara otomatis.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

6 Tanggapan to “24. INDIKATOR, ROULT”

  1. junianataslima Says:

    thanks a lot sir for helping me study🙂

  2. gisnawirdya Says:

    makasih pak atas info nya, ini dapat membantu sya dalam banyak hal

  3. selvyanyayu Says:

    terima kasih pak atas informasinya, info ini sangat membantu sekali dalam proses apapun.

  4. devydestiani Says:

    trimakasih Pak atas ilmu yang telah bapak berikan🙂

  5. putudarmawan Says:

    Terimakasih atas infonya pak
    semoga ilmu ini dapat saya manfaatkan dgn baik
    dan dapat mmbntu saya ke dpannya

  6. Desi Riskyani ( Sepdes ) Says:

    pak, apa yang bapak berikan sngat berguna untuk saya dan bisa saya pelajari lagi
    mksh pak🙂

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s


%d blogger menyukai ini: