29. ATOM

2.1 Atom hidrogenik

Marilah kita memperhatikan sebuah atom hidrogen di mana sebuah elektron bergerak di sekitar sebuah inti sebagaimana ditunjukkan pada Gambar 2.1. Berdasarkan pada sistem sederhana ini, kita akan mempelajari sifat fundamental dari tingkat energi dan fungsi gelombang.

Gambar 2.1 Sebuah atom hidrogenik. Z: bilangan atom, M: masa dari inti, m: masa dari elektron..

Muatan listrik dari inti dinyatakan oleh produk atau perkalian dari bilangan atom Z dan muatan elementer e. Energi potensial U diberikan oleh U = −Ze2 / 4πε0r. Dengan menggunakan rumus (1.73) untuk sistem dengan dua partikel yang diperkenalkan pada Bab 1, operator Hamiltonian Ĥ dari sistem ini dapat diekspresikan dengan persamaan berikut.

(2.1)

Di sini, μ adalah masa tereduksi yang diberikan oleh masa inti M dan masa elektron m dengan menggunakan persamaan berikut.

(2.2)

Ketika nilai 1/M dalam penyebut pada persamaan ini, untuk mendapatkan μ dapat diabaikan dengan mengingat bahwa M >> m, persamaan akan tereduksi menjadi μ = m dan sistem akan menjadi model yang sederhana yaitu sebuah elektron bergerak mengelilingi sebuah inti yang diam. Kesalahan yang disebabkan oleh pendekatan ini tidaklah terlalu besar sebagaimana kita dapat lihat di bawah ini pada Contoh 2.1. Hal ini akan memberikan bahwa solusi persamaan gelombang dari Hamiltonian pada persamaan (1.73) yang berlaku sangat ketat untuk gerak relatif akan dapat dipahami untuk merepresentasikan gerak elektron dalam atom.

Sebuah perbandingan dengan kasus pada sebuah atom hidrogen (Z = 1) mengindikasikan bahwa faktor e2 dengan sederhana dapat digantikan oleh Ze2 dalam ekspresi untuk energi potensial. Karenanya dari persamaan (1.79) dan (1.80) tingkat-tingkat energi akan diberikan oleh persamaan berikut.

(2.3)

(2.4)

Di sini, n adalah bilangan kuantum utama yang menentukan tingkat-tingkat energi. W(Z) adalah energi yang diperlukan untuk mengeluarkan satu elektron dari atom hidrogenik. Kuantitas ini untuk Z = 1 berkaitan dengan energi ionisasi dari atom hidrogen WH.

Contoh 2.1 Dalam kelipatan berapa dari jumlah energi yang diperlukan untuk menghasilkan sebuah ion dipositif seperti pada Helium (He2+) dengan memindahkan sebuah elektron dari sebuah ion Helium (He2+) jika dibandingkan dengan energi ionisasi dari atom Hidrogen?

(Jawaban) Energi ionisasi sebuah atom bergantung pada masa tereduksi μ dan bilangan atom Z. Pendekatan atas rasio masa dari proton dan elektron yang berkisar 1836:1 dan juga pendekatan atas masa inti atom hidrogen dan helium sebesar 1:4, kita akan mendapatkan rasio masa tereduksi sebesar

Sedangkan untuk perbedaan bilangan atom akan memberikan Z(He)2 / Z(H)2 = 22 / 12 = 4 . Hal ini akan memberikan rasio sebenarnya dan diperoleh sebesar 4.0016.

Jika perbedaan pada masa tereduksi dapat diabaikan dengan menuliskan μ(He) = μ(H) = m, kemudian W(2) = 4WH, akan menghasilkan jawaban yaitu 4 untuk rasio yang diperoleh.

Dengan menggunakan operator Hamiltonian dalam persamaan (1.77), persamaan gelombang dapat diekspresikan dalam bentuk koordinat polar sebagai berikut.

(2.5)

Sebagaimana telah dipelajari tentang momentum sudut, Legendrian Λ hanya terdiri dari koordinat sudut (θ,φ) , dan ini memenuhi persamaan dengan fungsi harmonik sudut Yl,m.

(2.6)

Dengan memperhatikan persamaan ini, marilah kita mengambil fungsi gelombang dalam bentuk sebagai berikut.

(2.7)

Dari persamaan (2.5) – (2.7), kita akan mendapatkan

(2.8)

Fungsi Ψ yang diperkenalkan pada persamaan (2.7) dapat menjadi solusi dari persamaan gelombang untuk atom hidrogenik, dengan persyaratan bahwa fungsi R(r) akan ditentukan untuk memenuhi kondisi [ ] = 0. Dalam cara ini, fungsi gelombang dari atom hidrogenik diberikan dalam bentuk yang merupakan produk dari bagian radial R(r) dan bagian sudut Yl,m (θ,φ) .

Persamaan untuk menentukan R(r) diberikan sebagai berikut.

(2.9)

Dengan memecahkan persamaan diferensial ini untuk mendapatkan persamaan yang kontinyu dan finit, nilai eigen energi E akan sesuai dengan persamaan (1.79) dan (1.80) dan batasan-batasan terhadap n dan l dapat diturunkan.

(2.10)

Fungsi-fungsi R(r) untuk bagian radial diekspresikan dalam bentuk persamaan matematik yang dikenal sebagai polinomial Laguarre, Lα dan sebuah fungsi dari r yang diberikan di bawah ini sebagai ρ.

Tabel 2.1 Bagian radial dari fungsi gelombang Rn,l(r)

Di sini, Lαβ adalah polinomial Laguerre terasosiasi, a0adalah konstanta yang sama dengan radius Bohr, as ketika μ = m. Sebagaimana dapat dilihat pada Contoh 2.1, kesalahan-kesalahan yang disebabkan oleh pendekatan μ = m adalah sangat kecil yaitu kurang dari 0.1%. Sehingga, a0 dapat dikatakan sama dengan radius Bohr as. Tabel 2.1 menunjukkan bagian radial dari fungsi gelombang Rn,l yang diperoleh dari persamaan (2.11) − (2.15). Grafik dari fungsi Rn,l untuk hidrogen ditunjukkan pada gambar 2.2.

Gambar 2.2 Bagian radial Rn,l dari fungsi gelombang atom hidrogen.

Karena kuadrat dari nilai absolut dari persamaan gelombang sebanding dengan kemungkinan untuk menemukan sebuah partikel, maka bentuk dari Rn,l akan menentukan perilaku sebuah elektron dalam atom sebagai fungsi terhadap jarak r terhadap inti atom. Ini adalah sebuah hal yang sangat penting dalam berbagai fenomena kimia dan dalam kaitannya dengan perilaku elektron dalam atom-atom yang lain. Sebagaimana dapat dilihat pada Tabel 2.1 dan Gambar 2.2, bagian radial dari fungsi gelombang Rn,l memiliki sifat matematika yang diberikan sebagai berikut. Dalam hubungannya dengan sifat-sifat ini, tanda karakteristik tentang kebergantungannya pada r dan probabilitas untuk menemukan sebuah elektron dalam atom ditunjukkan dalam [ ]. Sebagaimana akan ditunjukkan dalam bagian 2.2, kebergantungannya pada r dari probabilitas untuk menemukan sebuah elektron adalah sebanding dengan r2Rn,l2 .

[Sifat matematik dari bagian radial fungsi gelombang dan kebergantungannya pada r untuk probabilitas menemukan sebuah elektron]

  1. Dikarenakan adanya sebuah fungsi eksponensial maka nilai fungsional akan mendekati nilai 0 secara asimtotik bersamaan dengan meningkatnya r [bergerak ke arah luar dari inti atom, probabilitas untuk menemukan sebuah elektron akan menghilang].
  2. Koefisien dari r dalam eksponen akan mengecil untuk bilangan kuantum utama, n yang besar dan ini membuat nilai fungsi akan mendekati 0 lebih lambat untuk n yang lebih besar. [Probabilitas untuk menemukan sebuah elektron akan berkembang pada daerah jauh dari inti jika berpindah dari bilangan kuantum utama n = 1, n = 2 dan n = 3].
  3. Nilai fungsional pada r = 0 adalah 0 kecuali untuk l = 0 [tidak ada kemungkinan untuk menemukan sebuah elektron pada inti kecuali untuk l = 0]
  4. Terdapat n − l − 1 jarak (bola) di mana tidak ada elektron yang dapat ditemukan dengan nilai fungsi jarak yang nol. [Dalam kasus n − l > 1 , probabilitas untuk menemukan sebuah elektron menurun hingga daerah terluar dan memiliki sifat berosilasi].

Bilangan kuantum utama, n memiliki arti yang sangat penting yang mengklasifikasikan tingkat-tingkat energi. Dan juga mengkarakterisasi sifat spasial dari probabilitas untuk menemukan sebuah elektron. Hal ini akan memberikan keadaan bahwa elektron-elektron dalam sebuah atom akan bergerak keluar pada pembentukan kulit elektron yang disebut sebagai kulit K (n = 1), kulit L (n = 2), kulit M (n = 3), kulit N (n = 4), kulit O (n = 5), kulit P (n = 6) dan seterusnya. Kecenderungan ini berkaitan dengan radius orbital dalam model Bohr yang semakin membesar, dan berkaitan dengan meningkatnya n.

Dalam model Bohr, gerakan sebuah elektron yang tergabung dalam suatu kulit elektron tertentu dibatasi pada orbit melingkar yang sederhana. Dalam mekanika kuantum, gerakan elektron menjadi hal yang sangat kompleks dikarenakan bentuk dari fungsi gelombang bergantung tidak hanya oleh n akan tetapi juga pada l dan m. l dan m adalah juga bilangan kuantum yang menyatakan suatu keadaan atom dan fungsi-fungsi gelombangnya. l disebut sebagai bilangan kuantum azimut dan m disebut sebagai bilangan kuantum magnetik. l berkaitan dengan arah dan membentuk fungsi gelombang dan l berkaitan dengan fenomena bahwa tingkat-tingkat energi dapat bervariasi dengan medan magnetik.

Fungsi gelombang {Ψ} dari sebuah atom hidrogenik diekspresikan sebagai sebuah produk dari bagian radial Rn,l(r) dalam persamaan (2.13) dan fungsi harmonik sperikal Yl.m, dan karenanya {Ψ} dinyatakan sebagai kombinasi dari tiga bilangan kuantum (n, l, m).

(2.16)

(r,θ,φ) adalah koordinat elektron terhadap posisi inti atom dan Ψn,l,m menyatakan gerakan elektron di dalam atom. Berdasarkan hubungan-hubungan dalam gerakan orbital elektron dalam model Bohr, fungsi gelombang untuk sebuah elektron dalam sebuah atom disebut sebagai orbital atomik. Orbital atomik untuk sembarang atom juga diekspresikan sebagai sebuah produk dari bagian radial dan bagian sudutnya (harmonik sperikal) sebagaimana ditulis pada persamaan (2.16) dan dispesifikasikan oleh 3 buah bilangan kuantum (n, l, m). Meskipun bagian sudut dari orbital atomik adalah sama untuk atom hidrogenik dan sembarang atom, bagian radialnya berbeda untuk keduanya. Sifat karakteristik untuk bagian radial (1)-(4) yang diberikan di atas adalah berlaku secara umum untuk semua atom.

Sebagaimana disebutkan untuk momentum sudut terdapat beberapa batasan untuk dua bilangan bulat l dan m yang berkaitan dengan fungsi harmonik sperikal Yl.m. Dengan memperhatikan hubungan antara l dan n dalam persamaan (2.10) kita akan mendapatkan persamaan-persamaan berikut.

(2.17)

(2.18)

Terdapat n kasus dari nilai-nilai l untuk n yang sama (kulit elektron ke-n) dan terdapat 2l + 1 kasus dari nilai-nilai m untuk nilai l yang sama. Ini akan menuju pada keadaan bahwa kombinasi yang dapat diterima untuk l dan m untuk suatu kulit elektron tertentu seperti pada kulit ke-n dapat ditentukan dengan n2 melalui perhitungan berikut.

(2.19)

Karenanya, terdapat 12 = 1 fungsi gelombang untuk kulit K, 22 = 4 untuk kulit L dan 32 = 9 untuk kulit M. Bilangan-bilangan ini berhubungan dengan batas atas dari jumlah elektron yang dapat digabungkan dalam suatu kulit elektron tertentu, sebagaimana dapat dilihat pada bagian 2.5

Meskipun tingkat-tingkat energi dari atom hidrogenik bergantung hanya pada bilangan kuantum utama sebagaimana dapat dilihat dari persamaan (2.3), fungsi gelombang menyatakan sifat statistik dari partikel bergantung pada l dan m dan juga n memiliki variasi dari bentuk-bentuk fungsinya, masing-masing, terdapat satu jenis untuk n = 1, empat jenis untuk n = 2 dan sembilan jenis untuk n = 3. Dengan kata lain, terdapat n2 buah fungsi gelombang yang memiliki perbedaan jenis dan dengan tingkat energi En yang sama untuk semua tingkat tereksitasi (n > 1) kecuali untuk keadaan dasar (n = 1) . Fungsi gelombang memiliki generasi lipat empat untuk n = 2 dan lipat sembilan untuk n = 3.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

.

2.2 Bentuk-bentuk orbital atomik

Penciptaan dan penghancuran ikatan kimia terjadi dalam kegiatan interferensi gelombang elektron. Mekanismenya berhubungan dengan bentuk dari fungsi orbital atomnya. Dalam bagian ini, klasifikasi dan sifat dari bentuk orbital akan didiskusikan untuk orbital atomik dari atom hidrogenik sebagai suatu contoh.

2.2.1 Klasifikasi orbital atomik

Orbital atomik adalah fungsi gelombang yang menyatakan gerakan elektron dalam sebuah atom dan orbital atomik diklasifikasikan ke dalam beberapa jenis terhadap bilangan kuantum utama dan bilangan kuantum azimut l sebagaimana dituliskan pada Tabel 2.2.

Bilangan kuantum azimut berkaitan dengan sifat dari deret spektral dalam spektra atomik. Ini akan memberikan keadaan bahwa huruf pertama dalam penamaan deret spektral seperti pada ketajaman, keutamaan difusi dan hal yang mendasar telah digunakan sebagai s untuk l = 0, p untuk l = 1 dan f untuk l = 3.

Tabel 2.2. Klasifikasi dari orbital atomik

2.2.2 Fungsi-fungsi sudut untuk s, p, d.

Penamaan s, p, d untuk orbital atomik digunakan untuk mengklasifikasikan bagian angular. Meskipun prototipe dari fungsi bagian angular adalah fungsi harmonik sperikal Yl,m( θ,φ) dalam perhitungan nyata dan fungsi konvensional yang diberikan pada tabel 2.3 lebih digunakan untuk suatu alasan tertentu dan alasannya yang diberikan di bawah ini. Bagian angular seperti s, p dan d berkaitan dengan mekanisme dan sifat arah dalam pembentukan ikatan kimia dan ini akan menyebabkan arah dan tanda dari bagian angular harus dipelajari secara hati-hati.

Fungsi s dalam bagian angular hanya memiliki satu jenis, yaitu fungsi harmonik sperikal Y0,0 sebagaimana ditunjukkan dalam Tabel 2.3, di mana memiliki sebuah nilai konstan dan tidak bergantung pada sudut θ dan φ. Dengan demikian orbital s berbentuk bola dan nilai dari fungsi orbital s adalah sama dengan sebuah nilai konstan terhadap jarak r, tidak bergantung pada arah.

Tiga jenis harmonik sperikal Y1,-1, Y1,0, Y1,1 berkaitan dengan fungsi p. Sebagaimana ditunjukkan dalam Tabel 1.3 dalam bagian 1.13, Y1,-1 dan Y1,1 adalah fungsi-fungsi bilangan kompleks dan Y1,0 adalah sebuah fungsi riil yang diekspresikan sebagai berikut:

(2.20)

Di sini hubungan z = r cos θ dari definisi tentang koordinat polar digunakan. Y1,0 bergantung pada sudut polar θ menunjukkan bahwa sudut tersebut terdefleksi dari sumbu z dan nilai absolut dari Y1,0 berada pada nilai maksimum pada arah sumbu z. Karenanya, fungsi Y1,0 disebut sebagai fungsi pz.

(2.21)

Fungsi yang sama dan bergantung pada sudut defleksi dari sumbu x dan sumbu y dapat juga didefinisikan dalam persamaan berikut dan mereka disebut sebagai fungsi px dan py.

(2.22)

(2.23)

Kecuali untuk kasus-kasus yang khusus seperti dalam sebuah medan magnet, ketiga fungsi px, px dan pz secara konvensional digunakan sebagai bagian angular dari fungsi-fungsi p. Fungsi-fungsi p ini seluruhnya memenuhi persamaan eigen (2.6) dengan sebuah bilangan kuantum azimut l = 1.

Dalam kasus di mana m ≠ 0 , fungsi harmonik sperikal dalam Tabel 1.3 secara umum adalah fungsi-fungsi kompleks dan perhitungan matematikanya rumit. Akan lebih mudah jika menggunakan fungsi-fungsi berikut dengan nilai-nilai riil yang dinotasikan sebagai Yl,m+ dan Yl,m dan semuanya ekivalen dengan Yl,m, Yl,−m untuk memenuhi persamaan (2.6).

(2.24)

(2.25)

Fungsi-fungsi ini digunakan dalam Tabel 2.3 untuk fungsi p dan d.

Lima jenis fungsi d ditunjukkan dalam Tabel 2.3 dan ini berhubungan dengan bagian angular (sudut) untuk l = 2 dan karakteristik arahnya lebih kompleks dibandingkan dengan orbital p. Karakteristik 3 dimensi dari fungsi-fungsi orbital tidak dapat dilihat dengan mudah melalui ekspresi matematikanya dan kita akan mengenalkan beberapa tipe dari ekspresi yang tipikal dan menunjukkan bentuk-bentuknya.

Tabel 2.3. Fungsi s, p dan d untuk bagian angular.

2.2.3 Kebergantungan sudut dan bentuk dari koordinat-koordinat polar

Bagian sudut Y(θ,φ) menentukan kebergantungan sudut dari kemungkinan untuk menentukan sebuah elektron. Dengan mengambil |Y| dalam setiap arah sebagai panjang sebuah vektor terhadap titik awal, sebuah kontur dapat dibuat dengan titik puncak vektor tersebut memberikan sebuah gambaran atas koordinat polar dalam permukaan 3 dimensi dan ditunjukkan dalam Gambar 2.3. Gambar-gambar ini menyatakan kebergantungan sudut dari orbital atom. Simbol + dan – dalam Gambar 2.3 menunjukkan tanda untuk Y(θ,φ).

Gambar 2.3 Kebergantungan sudut dari orbital s, p dan d.

Contoh 2.2. Buatlah gambar dari koordinat polar untuk fungsi pz, Y1,0 dalam bidang x-z

(Jawaban). Karena φ = 0, y = 0 dalam bidang x-z, koordinat x dan z dari titik puncak dari vektor P(x,0,z) menunjukkan besaran dan jaraknya dari titik pusat diberikan sebagai berikut

Di sini Y adalah

Dengan memperhatikan bahwa |cosθ| = cosθ untuk 0 ≤ θπ / 2 dan dengan menggunakan sebuah konstanta a,

x dan y dapat dinyatakan sebagai

Karenanya

Dengan demikian kita mendapatkan

Ini akan menghasilkan gambar berupa sebuah lingkaran dengan jari-jari a/2 dan terletak pada ( x,z) = (0, a / 2) . Lingkaran yang lain dengan jari-jari a/2 terletak pada (x,z) = (0,− a / 2) juga memenuhi syarat karena |cosθ| = − cosθ untuk π / 2 ≤ θπ. Dengan demikian kita mendapatkan dua lingkaran dengan jari-jari yang sama dengan titik pusat berada pada sumbu z dan membuat kontak satu dengan lainnya pada titik pusat sebagaimana ditunjukkan dalam gambar berikut.

Untuk φ ≠ 0 , gambar di atas harus dirotasikan pada sudut φ di sekitar sumbu z untuk menghasilkan gambar 3 dimensi yang terdiri dari pasangan sperikal sebagaimana ditunjukkan pada Gambar 2.3.

2.2.4 Kebergantungan radial dan distribusi radial

Kebergantungan radial dari orbital atomik pada jarak r dari inti atom ditentukan oleh bagian radial Rn,l(r). Probabilitas untuk menemukan sebuah elektron dalam daerah antara sebuah pasangan bola dengan jari-jari r dan r + dr dilakukan dengan memperkenalkannya sebagai D(r)dr, dan d(r) didefinisikan sebagai fungsi distribusi radial yang digunakan untuk memahami kebergantuangan radial dari sebuah fungsi gelombang. Gambar 2.4 menunjukkan beberapa contoh dari D(r) untuk sebuah atom hidrogen. Penurunan fungsi distribusi radial D(r) akan dilakukan sebagai berikut. Dikarenakan d(r) akan menjadi 0 ketika bagian radial R memiliki sebuah noda, terdapat ( n-l) titik-titik maksimum yang mana jumlahnya satu lebih banyak dibandingkan dengan jumlah noda untuk R. Nilai terbesar dari D(r) terletak pada nilai maksimum terluar. Jarak dari nilai terbesar rmax meningkat dengan meningkatnya n. rmax menunjukkan tempat di mana probabilitas untuk menemukan sebuah elektron sangat besar dan jarak ini memberikan ukuran kulit elektron, ukuran atom dan juga panjang ikatan.

Marilah kita menurunkan rumus untuk D(r). Integrasi dari D(r) dari 0 ke ∞ harus sama dengan probabilitas untuk menemukan elektron dalam seluruh ruang yang merupakan nilai integrasi dari kuadrat dari fungsi gelombang Ψ pada seluruh daerah dalam ruang 3 dimensi. Nilai ini harus merupakan nilai yang finit disebabkan oleh persyaratan normalisasi. Dengan demikian,

(2.26)

Gambar 2.4 Fungsi distribusi radial D(r) = r2R2n,l.

Gambar 2.5. Elemen volume dv = r2 sin θdφdθdr untuk koordinat polar.

(2.27)

Harus dicatat bahwa jangkauan dari integrasi adalah dari 0 ke 2π untuk φ, dari 0 ke π untuk θ, dan dari 0 ke ∞ untuk r. Dengan memasukkan penggantian ini dalam sisi bagian kanan pada persamaan (2.26) dan membandingkannya dengan sisi sebelah kiri, kita mendapatkan rumus untuk D(r) dengan proses integrasi berikut.

(2.28)

Berikutnya, penggantian untuk Ψ dengan sebuah produk dari bagian radial R akan memberikan sebuah integrasi untuk bagian sudut dari Y terhadap sudut-sudut θ dan φ, yang juga sama dengan kondisi normalisasi untuk fungsi harmonik sperikal Y.

(2.29)

Dengan demikian kita akan mendapatkan sebuah rumus untuk D(r) sebagai berikut.

(2.30)

Contoh 2.3 Carilah D(r) untuk fungsi gelombang 1s dari sebuah atom hidrogenik.

(Jawaban) Fungsi gelombang 1s untuk atom hidrogenik diberikan sebagai berikut

Dengan menggunakan bagian radial dari fungsi gelombang ini dan persamaan (2.30), fungsi distribusi radial D(r) dinyatakan sebagai berikut

Di sini

Jelas terlihat dari diferensiasi pada persamaan ini bahwa nilai maksimum dari D(r) terletak pada r = a0 / Z . Dalam kasus sebuah atom hidrogen (Z = 1), jarak untuk nilai maksimum sama dengan a0, dan ini hampir sama dengan radius Bohr aB.

2.2.5 Garis-garis kontur

Beberapa alat diperlukan untuk merepresentasikan fungsi gelombang atomik karena mereka adalah fungsi-fungsi dalam koordinat 3 dimensi. Sebagai contoh, garis-garis kontur dapat digambarkan pada sebuah bidang untuk Ψ atau |Ψ|2 pada nilai yang sama (Gambar.2.6).

Gambar 2.6 Garis kontur untuk Ψ dan |Ψ|2.

Karena orbital s memiliki simetri sperikal, garis-garis melingkar yang rapat akan digambarkan untuk setiap bidang. Di samping itu orbital, px, py, dan pz memiliki simetri aksial yang berkaitan dengan sumbu kartesian dan dengan demikian nilai terbesarnya akan muncul sebagai sebuah pasangan dari titik-titik pada sumbu-sumbu pada posisi simetrisnya. Tanda dari fungsi p untuk pasangan-pasangan titik ini saling berlawanan satu dengan yang lainnya. Hal ini dikarenakan setiap fungsi p berubah tandanya terhadap refleksi dalam bidang termasuk titik awal dan berada pada posisi vertikal terhadap sumbu, Ψ = 0 dalam bidang. Dengan kata lain, setiap fungsi p memiliki sebuah bidang noda yang tegak lurus terhadap sumbu.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

.

2.3 Bentuk-bentuk orbital atomik

Masalah untuk menentukan gerakan elektron-elektron di dalam sembarang atom yang memiliki banyak elektron adalah tidak mudah sebagaimana masalah dalam atom hidrogenik. Ini kebanyakan dikarenakan oleh dua alasan sebagai berikut. Alasan pertama adalah disebabkan oleh interaksi antara elektron-elektron yang tidak membolehkan sebuah perlakuan terhadap gerak bebas dari seluruh elektron yang ada. Alasan lainnya adalah dikarenakan hadirnya momentum sudut dari elektron yang disebut dengan spin elektron yang tidak mudah untuk ditangani. Bahkan untuk sistem dengan dua elektron seperti pada sebuah atom helium, persamaan gelombang tidak dapat dipecahkan secara sederhana dan langsung. Karenanya, metoda pendekatan sangat diperlukan. Pada masa awal kelahiran teori kuantum, tidak terdapat komputer modern sehingga masalah-masalah sistem dengan dua elektron atau lebih (sistem elektron banyak) ditangani dengan metoda aproksimasi seperti metoda gangguan atau variasi yang akan dijelaskan ada Bab 3. Pada masa kini, perlakuan variasi yang cocok untuk komputer modern telah dikembangkan untuk memungkinkan kita melakukan perhitungan dengan lebih mudah dengan beberapa paket program yang konvensional. Dalam bagian ini, karakteristik dari fungsi-fungsi gelombang dan tingkat-tingkat energi untuk atom dengan elektron banyak akan dibandingkan dengan fungsi gelombang dan tingkat energi dari atom-atom hidrogenik.

Kita dapat menyimpulkan di sini bahwa gerakan dari elektron-elektron dapat diperlakukan sama dengan orbital atomik 1s, 2s, 2px, 2py, 2pz dalam atom hidrogenik. Meskipun tingkat-tingkat energi dari atom hidrogenik bergantung hanya pada bilangan kuantum utama n, tingkat-tingakat energi untuk atom dengan elektron banyak dengan bilangan kuantum utama yang sama dapat berbeda dikarenakan nilai terendah dari bilangan kuantum azimut akan memberikan tingkat energi yang lebih rendah (lebih stabil). Dalam bagian berikut ini, akan dijelaskan bahwa spin elektron juka akan memungkinkan kita untuk memahami konfigurasi elektron dalam orbital atom dan tingkat-tingkat energinya, dan akan sangat membantu untuk menjelaskan masing-masing sifat dari unsur kimia.

2.3.1 Model elektron independen

Sebagaimana yang disebutkan untuk atom hidrogenik, gerakan dari inti atom dapat diabaikan jika diperbandingkan dengan gerakan elektron. Dengan demikian inti atom dapat dinyatakan dalam posisi tetap yaitu pada posisi keseimbangannya terhadap sistem dengan elektron banyak. Dengan penyederhanaan ini operator Hamiltonian Ĥ untuk sistem dengan N elektron diberikan oleh persamaan berikut.

(2.31)

Di dalam persamaan ini, yang terdapat dalam tanda kurung [ ] dari suku pertama dapat ditulis sebagai dan merupakan sebuah operator yang berkaitan dengan koordinat dari elektron ke-i. rij pada sisi sebelah kanan menyatakan jarak antara elektron ke-i dan j dan suku yang di dalamnya terdapat rij menyatakan interaksi antar elektron. Sebagai sebuah pertukaran dari elektron i dan j dalam interaksi antar elektron, hal ini juga akan berlaku untuk pasangan elektron yang sama, i > j yang dinyatakan dalam simbol penjumlahan Σ mengindikasikan untuk melakukan penjumlahan hanya sekali untuk sebuah pasangan i dan j. sama dengan operator Hamiltonian Ĥ dari sebuah atom hidrogenik dengan (μ = m) kecuali untuk indeks i yang diletakkan pada Δ dan r, dan persamaan karakteristik dan solusinya adalah sebagai berikut.

φn,l,m adalah orbital atomik yang menyatakan gerak dari sebuah elektron sebagaimana dalam kasus atom hidrogenik. Secara umum, fungsi orbital ini menyatakan gerakan sebuah elektron yang disebut sebagai orbital. Nilai eigen energi ε0 yang berkaitan dengan orbital, disebut sebagai energi orbital.

Pengabaian interaksi antara elektron dalam suku kedua pada persamaan (2.31) akan menghasilkan Hamiltonian Ĥ0 dalam bentuk sebagai berikut.

(2.35)

Persamaan eigen untuk Ĥ0 ini adalah Ĥ0Φ = EΦ, dan ini dapat dengan mudah untuk dipecahkan dengan persamaan (2.32)-(2.34) untuk memberikan solusi-solusi sebagai berikut.

Di sini, orbital atomik dan energi orbital untuk elektron-elektron pertama ditunjukkan dengan φn1 dan εn1 dan bukan ditulis dengan φn1,l1,m1 dan εn1,l1,m1 yang berisi tiga bilangan kuantum dan tertulis secara eksplisit. Penyingkatan ini diaplikasikan pada bagian yang terakhir dari φnN, εnN.

Dalam kasus hipotetik tanpa interaksi antar elektron, fungsi gelombang dan energi untuk gerakan kolektif elektron dapat diekspresikan dalam bentuk orbital dan energinya untuk gerakan independen dari individual elektron. Gambaran karakteristik untuk model elektron independen dinyatakan sebagai berikut.

[Gambaran karakteristik dari model elektron independen]

  1. Fungsi gelombang untuk sebuah sistem elektron banyak dinyatakan sebagai sebuah produk dari fungsi gelombang untuk sistem satu elektron (orbital).
  2. Energi untuk sebuah sistem elektron banyak diberikan sebagai sebuah penjumlahan sederhana dari energi-energi untuk sistem sebuah elektron (energi-energi orbital).

Gambaran (1) menunjukkan bahwa probabilitas untuk menemukan sebuah elektron pada suatu posisi diberikan sebagai sebuah produk dari probabilitas untuk menemukan masing-masing elektron. Gambaran (2) menunjukkan bahwa tingkat energi terendah, tingkat dasar, dari sebuah sistem elektron banyak direalisasikan ketika elektron-elektron tersebut secara individual berada dalam tingkat energi terendah. Meskipun keberadaan seluruh elektron dalam orbital 1s adalah dimungkinkan untuk atom-atom H dan He, namun hal ini tidak diijinkan untuk seluruh atom lain yang memiliki bilangan atom Z ≥ 3. Alasannya akan diberikan dalam bagian 2.4, dalam kaitannya dengan spin elektron.

2.3.2 Efek perisai dan model muatan inti efektif

Interaksi antar elektron diabaikan dalam model elektron independen. Akan tetapi pendekatan yang demikian itu tidaklah tepat untuk sistem nyata di mana interaksi antar elektron sangat berarti. Marilah kita meninjau efek interaksi antar elektron dengan menggunakan sebuah model sederhana.

Sekarang kita akan memperkirakan efek dari gaya tolak-menolak yang disebabkan oleh elektron-elektron lain pada sebuah elektron yang bergerak pada jarak r0 dari inti atom. Gaya elektrostatik akan memberikan dua kondisi dari efek interaksi tolak-menolak antar elektron dalam sebuah atom bergantung pada daerah mana elektron lain berada yaitu pada r > r0 atau r < r0, dengan mengasumsikan bahwa distribusi elektron berbentuk bola, yaitu:

  1. Tidak terdapat gaya-gaya secara rata-rata dari elektron-elektron terluar (r > r0).
  2. Gaya-gaya yang mengarah keluar disebabkan secara rata-rata oleh elektron-elektron di bagian dalam dan efek dari gaya ini akan mengurangi gaya tarik-menarik yang disebabkan oleh muatan inti, sebagaimana jika sebuah elektron ditempatkan pada inti untuk menurunkan muatan ini sebanyak satu muatan.

Efek dari elektron-elektron dalam yang mengurangi gaya-gaya tarik menarik oleh inti disebut sebagai efek perisai. Besarnya efek perisai adalah lebih besar untuk elektron terluar dibandingkan dengan untuk elektron-elektron dalam. Efek perisai dapat ditinjau secara ekivalen dengan mengganti bilangan atom Z dari inti atom dengan bilangan yang lebih kecil. Perluasan dari reduksi s diperkenalkan sebagai konstanta perisai dan muatan efektif inti didefinisikan sebagai = Z − s. Konstanta perisai s akan merepresentasikan jumlah elektron dalam. Jika sebuah elektron terletak dibagian terluar, maka konstanta perisai untuk elektron ini akan menjadi s = Z-1 dan kemudian akan berhubungan dengan muatan inti efektif dari yang menjadi = Z − (Z − 1) = 1 . Hal ini menjadi sangat penting ketika kita akan mendiskusikan sifat periodisitas energi ionisasi.

Jika kita mengganti Z dalam suku pertama pada persamaan (2.31) dengan bersamaan dengan pengabaian interaksi antar elektron, sebuah Hamiltonian Ĥ dari sebuah model di mana interaksi antar elektron-elektron secara efektif diperhitungkan di dalam muatan efektif inti yang didefinisikan sebagai , diberikan dengan

(2.39)

Model ini disebut sebagai model muatan inti efektif. Dengan menuliskan ulang suku dalam tanda [ ] dalam persamaan (2.39) dengan i, kita mendapatkan hasil-hasil yang sama sebagaimana terdapat dalam persamaan (2.36)-(2.38). Ini menggambarkan bahwa gambaran karakteristik yang disebutkan untuk model elektron independen dapat juga berlaku untuk moedel muatan inti efektif. Harus dicatat bahwa energi orbital dalam persamaan (2.33) dimodifikasi dengan mengganti Z dengan , yang bergantung juga pada jenis orbital dan khususnya pada pengaturan dari lokasi elektron dalam dan elektron luar terhadap elektron-elektron lainnya. Model muatan inti efektif sangat berguna untuk membahas konfigurasi elektronik dari atom-atom dan periodisitasnya.

2.3.3 Orbital atomik dan tingkat energi untuk atom berelektron banyak

Berdasarkan pada metoda variasi, sebuah perlakuan teoritis, yang lebih pasti dan rasional dibandingkan dengan model muatan inti efektif, dapat dibentuk untuk mendapatkan fungsi-fungsi orbital dan energi untuk sistem dengan elektron banyak. Gambaran karakteristik dari hasil-hasil dengan cara demikian yaitu dengan metode variasi dijelaskan di bawah ini.

Fungsi orbital atomik φ diberikan sebagai produk dari fungsi radial R‘(r) dan bagian angular (sudut) Y(θ,φ) sebagaimana dalam kasus atom-atom hidrogenik dan orbital atom ini diklasifikasikan dalam sebuah himpunan dari tiga bilangan kuantum n, l dan m.

(2.40)

Yl,m dalam harmonik sperikal dan R‘(r) yang berbeda dari R(r) untuk atom hidrogenik adalah sebuah fungsi dari r, secara kualitatif sangat mirip dengan fungsi hidrogenik R(r) dalam beberapa hal yang sudah disebutkan berkaitan dengan kelakuan asimtotik dan noda.

Ini akan memberikan pengertian bahwa orbital atomik dapat diklasifikasikan menjadi 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz, 3dxy, 3dyz, 3dzx, 3dx2y2, 3dz2,…, sebagaimana dalam kasus orbital hidrogenik.

Tingkat-tingkat energi dengan bilangan kuantum utama n yang sama terdegenerasi untuk atom hidrogenik, sementara untuk atom dengan elektron banyak yang umum, energi-energi untuk orbital dengan n yang sama dapat berbeda ketika nilainya berbeda; nilai yang kecil akan memberikan energi yang lebih rendah. Sebagai contoh, pengaturan dari energi orbital 3s, 3p, dan 3d untuk atom dengan elektron banyak adalah sebagai berikut:

(2.41)

Alasan untuk hal ini berkaitan dengan besarnya efek perisai. Semakin kecil l akan menghasilkan probabilitas yang lebih besar untuk menemukan elektron-elektron yang dekat dengan inti di mana efek perisai tidak begitu efektif. Karenanya, nilai l yang lebih rendah akan memberikan gaya tarik menarik yang lebih kuat dari inti secara rata-rata dan mengakibatkan energi yang lebih rendah dan stabil. Jika l sama, maka nilai n yang lebih kecil akan memberikan energi yang lebih rendah, sebagaimana dalam kasus atom hidrogenik.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

.

2.4 Spin elektron

Orbital elektron dan tingkat energi dari sistem elektron banyak diklasifikasikan menjadi 1s, 2s, 2p, 3s, 3p, 3d, dan seterusnya dalam kasus atom-atom hidrogenik. Masalahnya adalah bagaimana elektron-elektron tersebut didistribusikan ke dalam orbital elektron. Apakah seluruh elektron digabungkan ke dalam orbital yang paling stabil yaitu orbital 1s dengan energi terendahnya? Kesimpulan dari teori kuantum adalah bahwa hanya ada dua elektron yang dapat menempati orbital yang sama. Aturan ini berkaitan dengan momentum sudut khusus yang disebut sebagai spin elektron.

2.4.1 Landasan eksperimental untuk spin elektron.

Keberadaan spin elektron dibuktikan melalui beberapa eksperimen.

  1. Eksperimen berkas atom oleh Stern dan Gerlach
  2. Aliran atom dapat dihasilkan dalam sebuah ruang vakum melalui nozel setelah melakukan evaporasi perak atau logam alkali dengan pemanasaan. Aliran atom yang demikian itu dalam vakum disebut sebagai berkas atom. O. Stern dan W. Gerlach menemukan pada tahun 1922 bahwa berkas atom perak atau atom natrium, yang memiliki hanya satu elektron pada kulit terluar, berpisah membentuk dua garis dalam sebuah medan magnet tidak homogen (Gambar 2.7). Eksperimen ini memberikan gambaran bahwa sebuah elektron memiliki sebuah momen magnetik, yang merupakan sifat magnetik yang berkaitan dengan arus listrik melingkar.

    Gambar 2.7 Eksperimen berkas atom oleh Stern dan Gerlach.

  3. Garis ganda (doblet) dalam spektrum atom logam alkali
  4. Sebuah warna oranye dari reaksi pembakaran natrium dapat dipancarkan dari lampu lecutan listrik dengan uap natrium. Garis-garih hitam (Garis Fraunhofer) ditemukan dalam spektrum dari matahari terdiri dari garis-garis dengan panjang gelombang yang sama sebagaimana spektrum natrium dan disebut sebagai garis-garis D. Garis-garis D dari natrium berasal dari transisi antara tingkat 3s dan 3p dan pada garis-garis itu diamati terdiri dari dua garis yang berdekatan (doblet) pada panjang gelombang 5895.93 Å dan 5889.97 Å. Doblet seperti itu juga ditemukan pada atom alkali yang lain dan jarak pemisahannya diketahui akan semakin membesar dengan susunan Li < Na < K < Rb < Cs. S.A. Goudsmit dan G.E. Uhlenbeck mengusulkan bahwa pemisahan garis spektra disebabkan oleh momen magnetik dari sebuah elektron yang berkaitan dengan gerakan melingkarnya. Karena momentum sudut dikaitkan dengan gerakan melingkar dari sebuah muatan listrik, momentum sudut ini yang menjadi asal usul momen magnetik dari sebuah elektron. Momentum sudut yang yang berkaitan dengan gerakan melingkar oleh sebuah elektron disebut sebagai spin elektron.

2.4.2 Operator, fungsi eigen, dan bilangan kuantum untuk spin elektron

Dalam usaha untuk membahas spin elektron dalam mekanika kuantum, operator harus diperkenalkan seperti pada momentum sudut orbital. Marilah kita menuliskan momen sudut spin sebagai dan dengan komponen-z ditulis sebagai z. Dengan mengambil analogi terhadap momentum sudut orbital, fungsi eigen yang umum Γ untuk dan z diharapkan ada dan harus memiliki hubungan sebagai berikut:

(2.42)

(2.43)

s adalah bilangan kuantum untuk kuadrat dari spin dan disebut sebagai bilangan kuantum spin. ms adalah bilangan kuantum untuk komponennya dan disebut sebagai bilangan kuantum spin magnetik. Aturan umum untuk momentum sudut menyarankan bahwa ms harus memiliki 2s + 1 nilai yang mungkin dengan s, s – 1,…, s, s + 1, s, s. Dengan eksperimen, berkas atom dipisahkan menjadi dua komponen dalam sebuah medan magnet dan spektra logam alkali terpisahkan menjadi 2 garis. Berdasarkan penemuan ini, ms disimpulkan hanya memiliki 2 nilai yang mungkin. Ini mengikuti ketentuan bahwa 2s + 1 = 2 dan karenanya kita mendapatkan s, s = 1/2, ms = ±1/2. Harus dicatat bahwa bilangan kuantum spin adalah sebuah setengah bilangan bulat dengan hanya satu nilai yaitu s = 1/2. Nilai yang dibolehkan untuk ms dibatasi hanya pada nilai ±1/2. Spin adalah momentum sudut yang sangat khusus jika dibandingkan dengan momentum sudut orbital.

Meskipun sifat yang khusus dari momentum sudut spin sangat sulit untuk dimengerti secara konseptual, perhitungan dan perlakuan matematikanya sangatlah sederhana. Karena hanya ada dua keadaan, maka hanya terdapat dua buah fungsi eigen. Biasanya fungsi spin berkaitan dengan dengan ms = 1/2 dinyatakan sebagai α, dan fungsi spin yang lain untuk ms = -1/2 dinyatakan sebagai β.

(2.44)

(2.45)

Dalam kaitan dengan orientasi dari momen magentik yang berkaiatan dengan gerakan berputar, arah ke atas disebut sebagai spin α dan arah ke bawah disebut sebagai spin β. Variabel σ untuk fungsi spin α(σ), β(σ) disebut sebagai koordinat spin.

Meskipun keberartian dari koordinat spin σ tidak jelas, kita tidak perlu untuk memperhatikan apa yang direpresentasikannya. Koordinat spin adalah koordinat ke empat yang mengkuti tiga koordinat untuk posisi dalam ruang tiga dimensi. Secara formal, nilai yang dimungkinkan untuk koordinat spin hanya ada dua kasus yaitu orientasi keatas σ =↑ dan orientasi ke bawah σ = ↓.

(2.46)

Probabilitas untuk menemukan sebuah elektron pada σ =↑ adalah sama dengan 1 dalam keadaan spin ke atas α dan 0 dalam keadaan spin ke bawah β . Di sisi yang lain, probabilitas untuk menemukan sebuah elektron pada keadaan σ =↓ adalah sama dengan 0 dalam keadaan spin ke atas α dan 1 dalam keadaan spin ke bawah β .

Dalam mekanika kuantum, beberapa integral perlu dihitung dalam kaitannya dengan probabilitas dan normalisasi. Sebagaimana untuk spin, sebuah penjumlahan yang sederhana untuk dua koordinat saja, ↑ dan ↓, yang perlukan. Sebagai contoh persamaan (2.46) akan menghasilkan

(2.47)

dan hal yang sama

(2.48)

Sebagai tambahan,

(2.49)

Sebagaimana dapat dilihat dari perhitungan-perhitungan ini, fungsi-fungsi spin α, β dalam persamaan (2.46) memenuhi sifat ortonormalitas.

Untuk sebuah fungsi ψ dari sebuah elektron dengan memperhatikan spin elektron, terdiri dari variabel untuk koordinat spasial x, y, z dan koordinat spin σ. Jika komponen dari spin elektron sz memiliki suatu nilai nilai yang pasti, fungsi spin dapat terdiri dari α atau β. Ini akan memberikan keadaan bahwa fungsi orbital spasial untuk koordinat kartesian φ(x,y,z) menghasilkan pasangan fungsi gelombang berikut untuk elektron-elektron yang di akomodasi dalam orbital spasial ini.

(2.50)

(2.51)

Persamaan-persamaan ini berkaitan dengan sebuah aturan bahwa jumlah elektron dalam setiap orbital spasial (dalam kasus sebuah atom dengan orbital 1s, 2s, 2px, 2py, 3dxy, dll.) haruslah tidak melebihi dua.

2.4.3 Batasan pada fungsi gelombang elektron banyak dan prinsip Pauli.

Pertanyaan tentang berapa banyak elektron yang dapat menempati sebuah orbital atomik seperti pada orbital 1s adalah masalah yang sangat penting dalam hubungannya dengan spektra atomik dan sifat-sifat atomiknya. Solusi dari masalah ini diberikan oleh Pauli pada tahun 1924 dan aturan ini disebut sebagai prinsip Pauli atau prinsip eksklusi Pauli.

[Prinsip Pauli (Prinsip eksklusi)]

Setiap orbital dapat ditempati oleh sebuah elektron dengan spin α atau spin β, akan tetapi ia tidak dapat ditempati oleh dua atau lebih elektron dengan spin yang sama.

Aturan ini ditetapkan oleh Pauli berdasarkan hasil eksperimen seperti pada spektra atomik. Hal yang sangat penting adalah bahwa setiap elektron memenuhi aturan ini, dalam hubungannya dengan pembentukan fungsi gelombang elektron banyak.

Marilah kita meninjau dua elektron. Satu terletak pada sebuah koordinat q1 dan yang lain pada q2. Keadaan ini dinyatakan dengan sebuah fungsi gelombang yang ditulis sebagai Ψ(q1,q2). Hal yang sama sebuah keadaan untuk dua elektron dengan koordinat yang saling bertukar dapat ditulis sebagai Ψ(q1,q2). Meskipun Ψ(q1,q2) dan Ψ(q2,q1) secara matematika berbeda ekspresi yang menyatakan penomoran elektron-elektron sebagai 1 dan 2, kita tidak dapat mengenal setiap perbedaan dalam dalam penomoran ketika kita mengamati elektron. Ini akan mengakibatkan bahwa probabilitas untuk menemukan elektron nomor 1 pada q1 dan elektron nomor 2 pada q2 harus sama dengan probabilitas untuk menemukan elektron nomor 1 pada q2 dan elektron nomor 2 pada q1. Kondisi ini dinyatakan dengan persamaan berikut.

(2.52)

Dengan mencatat bahwa fungsi gelombang secara umum adalah bilangan kompleks, kita akan memperoleh

(2.53)

Pilihan awal dari dua elektron dan juga geometrinya dapat diambil sembarang. Dengan demikian adalah tidak masuk akal untuk mengasumsikan bahwa konstanta θ dalam persamaan (2.53) berbeda dan bergantung pada pilihan dari elektron dan geometrinya. Karenanya hubungan yang sama harus dipenuhi untuk sebuah pertukaran dari q1 dan q2.

(2.54)

Dua persamaan ini akan menghasilkan

(2.55)

Sehingga,

(2.56)

Dan akan menghasilkan

(2.57)

Dan kemudian

(2.58)

Kita bisa menyatakan bahwa tanda dari sebuah fungsi gelombang dapat berubah atau tidak, ketika sebuah pasangan partikel yang identik dipertukarkan koordinat geometriknya.

Sifat dari partikel akan menentukan yang mana dari dua kemungkinan tersebut yang dapat terjadi.

  1. Untuk tanda yang tidak berubah dengan sebuah perkalian +1, fungsi gelombangnya simetrik terhadap pertukaran koordinat dan partikel tipe ini disebut sebagai partikel Bose atau boson.
  2. Untuk tanda yang berubah dengan sebuah perkalian -1, fungsi gelombangnya antisimetrik terhadap pertukaran koordinat dan partikel tipe ini disebut sebagai partikel Fermi atau fermion.

Prinsip Pauli menunjukkan bahwa elektron adalah fermion dan fungsi gelombang akan berubah tandanya jika terjadi pertukaran koordinat.

Jika sebuah fungsi gelombang simetrik diijinkan untuk elektron-elektron, ini akan berlawanan dengan prinsip Pauli. Sebagai contoh, marilah kita mengasumsikan bahwa terdapat dua elektron menempati orbital 1s dengan spin α. Fungsi gelombang Ψ yang berkaitan dengan asumsi ini dinyatakan dengan fungsi orbital φ1s sebagai berikut.

(2.59)

Sekarang, marilah kita menukarkan koordinat dari nomor 1 dan nomor 2 dan kemudian kita mendapatkan

(2.60)

Ini secara jelas menunjukkan simetri fungsi gelombang untuk boson. Dengan kata yang lain, jika elektron-elektron tersebut adalah foston, akan ada dua atau lebih elektron yang menempati keadaan 1s yang sama dalam atom. Akan tetapi, keadaan ini akan berlawanan dengan prinsip Pauli.

Di sisi lain, untuk fungsi gelombang yang simetrik, tidak ada keadaan yang berlawanan dengan prinsip Pauli yang dapat diterima. Gambaran ini dapat dengan mudah dilihat ketika sebuah fungsi gelombang determinan, yang diusulkan oleh J. C. Slater dan disebut sebagai determinan Slater, digunakan.

Marilah kita memperkenalkan fungsi orbital ψ1, dan ψ2 yang juga terkandung koordinat spin sebagai tambahan dari koordinat spasial. Kita menulis fungsi gelombang Ψ untuk sistem dengan 2 elektron sebagai determinan berikut.

(2.61)

Setelah melakukan ekspansi, kita akan mendapatkan persamaan berikut yang menunjukkan karakter antisimetrik.

(2.62)

Harus dicatat di sini bahwa Hamiltonian Ĥ invarian terhadap pertukaran koordinat dari partikel identik dan bahwa jika Ψ = ψ1(q12(q1) adalah sebuah solusi dari Ĥψ = Eψ, maka ψ = ψ1(q22(q2) juga merupakan solusi dari Ĥψ = Eψ. Ini akan diikuti dengan keadaan bahwa determinan di atas memenuhi hubungan ĤΨ = EΨ. Dengan menggunakan determinan yang diusulkan oleh Slater, kita dapat membangun sebuah fungsi gelombang antisimetrik yang terdiri dari fungsi-fungsi orbital.

Sekarang kita mengasumsikan lagi bahwa ada dua elektron yang menempati orbital 1s dengan spin yang sama yaitu spin α. Dalam kasus ini , ψ1 = φ1s .α, ψ2 = φ1s .α, atau ψ1s = ψ2. Dengan demikian, kita dapat mengabaikan indeks dengan ψ1 = ψ2 = ψ. Fungsi gelombang determinan untuk sistem ini akan menjadi

(2.63)

Nilai yang sama dengan nol pada determinan ini adalah hasil yang pasti berkaitan dengan aturan umum dari determinan bahwa sebuah determinan dengan sebuah pasangan pada baris yang sama atau kolom yang sama akan sama dengan nol. Jika aturan ini digunakan, determinan dalam persamaan (2.63) dengan mudah akan diketahui sama dengan nol tanpa perlu dilakukan ekspansi. Berdasarkan pada hasil ini, dengan mudah terlihat bahwa sebuah konfigurasi elektron yang menempati orbital dan melanggar prinsip Pauli akan menghasilkan fungsi gelombang yang secara fisik tidak dapat dimungkinkan dengan sebuah nilai yang sama dengan nol atau mengindikasikan ketidakberadaan partikel. Perhatian yang lebih detail dan hati-hati telah menunjukkan bahwa fungsi gelombang yang antisimetrik, kompatibel dengan prinsip Pauli. Ini akan memberikan pemahaman bahwa elektron adalah fermion dengan karakter antisimetrik.

Karenanya, lebih mudah untuk menyatakan sebuah fungsi gelombang atom banyak sebagai sebuah determinan dari sebuah matrik dengan di dalamnya tersusun fungsi orbital. Sebuah fungsi gelombang determinan dibentuk dari fungsi orbital ternormalisasi sebagai sebuah fungsi untuk elektron banyak, dengan menyatakan bahwa sebuah faktor 1/N! ada di dalamnya. Dalam usaha untuk menyatakan sebuah fungsi gelombang determinan dalam bentuk yang singkat, kita dapat menuliskannya sebagai |ψ1ψ2…ψN| melalui sebuah barisan fungsi orbital {ψ1i} di antara sebuah pasangan garis vertikal.

Sebuah susunan dari fungsi orbital dalam sebuah bentuk matriks adalah ekivalen dengan membuat sebuah konfigurasi elektron yang berkaitan dengan keberadaan elektron pada masing-masing orbital. Ini, dengan kata lain mengakibatkan bahwa elektron akan menempati tingkat energi masing-masing. Dengan demikian, keadaan di mana elektron menempati orbital atau tingkat tertentu disebut sebagai konfigurasi elektron atau konfigurasi elektronik. Fungsi gelombang determinan digunakan sebagai perumusan matematik dari konfigurasi elektron. Metoda konseptual untuk membuat konfigurasi elektron dapat dipahami sebagai pengisian orbital oleh elektron.

Pembentukan fungsi gelombang determinan tidak memiliki kelebihan fisik yang penting jika nilainya sama dengan nol berlawanan dengan keberadaan elektron-elektron. Untuk dapat menghindari situasi yang tidak wajar, kehati-hatian harus dilakukan sedemikian rupa sehingga tidak ada fungsi orbital yang identik yang berada dalam barisan orbital dalam determinan atau dengan kata lain, kita tidak menggunakan kombinasi yang sama dari sebuah fungsi koordinat spasial dan sebuah fungsi spin lebih dari sekali dalam determinan. Penggunaan fungsi gelombang determinan menjamin dipenuhinya sifat antisimetrik elektron, dan karenanya konfigurasi elektron yang tidak sejalan dengan prinsip Pauli secara otomatis dapat dihindari karena nilai dari determinan yang demikian itu sama dengan nol.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

.

2.5 Konfigurasi elektron dalam atom

Berdasarkan atas eksperimen spektroskopi dan studi kuantum teori, konfigurasi elektron dalam keadaan dasar dari atom dapat ditentukan dan ditunjukkan dalam Tabel 2.4.

[Prinsip penyusunan konfigurasi elektron dalam atom]

Konfigurasi elektron dalam keadaan dasarnya dalam atom dapat disusun dengan menggunakan aturan sebagai berikut:

  1. Elektron cenderung untuk menempati orbital dengan energi terendah berdasarkan urutan dari tingkat energi orbital.
  2. Urutan dari energi orbital adalah sebagai berikut.
  3. (2.64)

    Orbital yang berada disebelah kiri lebih stabil dengan energi yang lebih rendah dibandingkan dengan orbital yang berada di sebelah kanannya dalam urutan di atas. Di antara orbital yang berada dalam tanda kurung, yang ditulis disebelah kiri akan terlebih dahulu ditempati, meskipun urutannya kadang-kadang dapat terbalik.

  4. Prinsip Pauli harus dipenuhi. Dengan kata lain pengisian orbital yang diperbolehkan adalah satu dari empat kasus berikut.
  5. Orbital ns diisi oleh 0~2 elektron.
  6. Orbital np diklasifikasikan ke dalam tiga jenis npx, npy, npz, dan setiap orbital ditempati oleh 0~2 elektron. Secara keseluruhan orbital np ditempati oleh 0~6 elektron. Terdapat lima jenis untuk orbital nd. Setiap orbital diisi oleh 0~2 elektron. Secara keseluruhan orbital nd akan ditempati oleh 0~10 elektron. Terdapat tujuh jenis orbital nf. Setiap orbital akan ditempati oleh 0~2 elektron. Secara keseluruhan orbital nd akan ditempati oleh 0~14 elektron.

  7. Konfigurasi di mana dua atau lebih elektron menempati orbital dengan energi yang sama harus mengikuti aturan Hund.
  8. Aturan Hund (1) Elektron terpisahkan dalam orbital-orbital yang sangat berbeda terlebih dahulu.

    Aturan Hund (2) Spin disejajarkan secara paralel.

Aturan Hund (1) adalah sebuah aturan yang mengurangi peningkatan energi interaksi yang disebabkan oleh gaya tolak-menolak antar elektron dan dengan demikian pemisahan elektron dalam orbital yang berbeda semakin efektif. Aturan Hund (2) adalah sebuah kecenderungan bahwa spin dengan arah yang sama cenderung untuk menjadi stabil. Dengan memperhatikan aturan-aturan ini akan menuju pada susunan berikut dari energi total untuk konfigurasi elektron dari sistem dengan dua elektron dalam sebuah pasangan dengan orbital yang ekivalen.

(2.65)

Sebagai contoh, marilah kita menyusun konfigurasi elektron untuk atom Ga dengan bilangan atom 31. Orbital 1s, 2s, 2p, 3s, 3p, 4s dan orbital 3d diisi oleh 2+2+6+2+6+2+10 = 30 elektron. Sisa elektron 31 – 30 = 1 menempati orbital sebuah 4p. Dengan demikian maka, konfigurasi elektron dari sebuah atom Ga, [Ga] dinyatakan sebagai berikut:

Orbital yang berada dalam tanda kurung ( ) menyatakan orbital dengan bilangan kuantum utama n yang sama dan bilangan kuantum azimut l, yang merupakan sebuah bagian dari kulit elektron dan dengan demikian disebut sebagai subkulit. Indeks atas yang berada di sebelah kanan pada ( ) menyatakan jumlah total elektron yang menempati subkulit. Ketika jumlah elektronnya adalah sama dengan 1, angka 1 pada bagian sebelah kanan dapat dihilangkan di antara semua kulit elektron yang memiliki elektron, kulit elektron dengan nilai n terbesar disebut sebagai kulit terluar. Dalam kasus Ga, n ≤ 4 dan dengan demikian Kulit N adalah kulit terluar.

Contoh tipikal konfigurasi elektron yang lain ditunjukkan untuk beberapa atom berikut:

Contoh konfigurasi elektron dari beberapa atom.

Harus dicatat di sini bahwa konfigurasi elektron untuk Cr dan Cu memiliki perkecualian dalam urutan dalam tanda kurung ( ) seperti dalam aturan (2) dalam prinsip penyusunan orbital; konfigurasi subkulit (4s) adalah (4s)1 bukan halnya (4s)2 dan satu elektron sisanya akan menempati sebuah orbital 3d sehingga menghasilkan subkulit (3d) yang terisi setengah dengan konfigurasi (3d)5 atau konfigurasi penuh (3d)10.

Contoh 2.4 Tunjukkan konfigurasi elektron dari sebuah atom karbon dengan menggunakan tingkat-tingkat energi elektron.

(Jawaban) Konfigurasi elektron sebuah atom C adalah

Karena orbital atomik hingga 2p diisi oleh elektron-elektron, tingkat energi elektron dari 1s hingga 2p harus ditunjukkan dan tingkat energi yang lebih tinggi dapat diabaikan. Menurut aturan Hund (1) dan (2), konfigurasi untuk subkulit (2p) akan berubah menjadi konfigurasi spin paralel sebagai berikut.

Tabel 2.4 Konfigurasi elektron untuk keadaan dasar atom dan term simbolnya.

(Catatan) dalam perioda ke-6 dan 7, jumlah total elektron hanya ditunjukkan untuk kulit K, L dan M karena mereka terisi penuh.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

.

2.6 Periodisitas

Sifat dari unsur-unsur menunjukkan sebuah periodisitas (perulangan) yang berasal dari periodisitas konfigurasi elektronnya. Dalam bagian ini, energi ionisasi dan afinitas elektron dipelajari dalam hubungannya dengan periodisitas. Pertama, hasil-hasil eksperimen akan ditinjau dan dilihat dan kemudian hubungannya dengan konfigurasi elektron akan dibahas.

2.6.1 Energi ionisasi dan afinitas elektron

Energi yang diperlukan untuk membuat n+1 keadaan valensi ionik dengan mengeluarkan sebuah elektron dari keadaan valensi ionik n dari sebuah bahan disebut sebgai energi ionisasi ke n+1. Definisi ini dapat digunakan pada n = 0. Dalam kasus n = 0, energi yang diperlukan untuk mengeluarkan sebuah elektron dari bahan yang netral disebut sebagai energi ionisasi pertama. Biasanya energi ionisasi tercatat sebagai energi ionisasi pertama. Gambar 2.8 dan Tabel 2.5 menunjukkan periodisitas dari energi ionisasi pertama dari atom-atom dan gambaran atas sifat utamanya adalah sebagai berikut.

Gambar 2.8 Periodisitas dari energi ionisasi

Gambaran (1) Berkaitan dengan meningkatnya bilangan atom dan nilai-nilai maksimum ditemukan pada atom-atom gas mulia.

Gambaran (2) Berkaitan dengan meningkatnya bilangan atom, nilai minimum dengan penurunan yang tiba-tiba dari atom-atom gas mulia ditemukan pada atom-atom logam alkali.

Gambaran (3) Dalam baris yang sama dalam tabel periodik, kecenderungan meningkat diketahui terjadi pada keseluruhan baris berangkat dari atom logam alkali hingga atom gas mulia.

Gambaran (4) Gambaran detail sepanjang baris yang sama pada tabel periodik menunjukkan nilai maksimum yang kecil pada grup kedua atau grup kelima dengan nilai minimum pada grup berikutnya.

Gambaran (5) Dalam grup yang sama, kecenderungan penurunan ditemukan jika kita bergerak ke bawah dalam tabel periodik.

Tabel 2.5 Energi ionisasi untuk beberapa atom (eV)

Energi yang dilepaskan pada saat sebuah elektron diserap oleh sebuah material yang secara elektrik netral disebut sebagai afinitas elektron, dan ekivalen dengan energi yang diperlukan untuk mengeluarkan sebuah elektron dari sebuah ion negatif monovalen. Afinitas elektron untuk atom-atom juga menunjukkan variasi periodik sebagaimana ditunjukkan dalam Tabel 2.6. Meskipun kecenderungannya untuk variasi sepanjang urutan vertikal dan horizontal dalam tabel periodik secara umum sama dengan energi ionisasi, posisi tempat nilai maksimum yang besar bergeser dari atom-atom gas mulia ke atom-atom halogen dan nilai minimumnya bergeser ke atom-atom gas mulia.

Tabel 2.6 Afinitas elektron untuk beberapa atom (eV)

Berbagai metoda diusahakan untuk menentukan energi W yang diperlukan untuk memindahkan sebuah elektron. Sebagai contoh, berdasarkan sebuah metoda yang mirip dengan metoda yang digunakan untuk mempelajari efek fotolistrik, energi kinetik elektron ½mv2 yang dilepaskan dari suatu bahan melalui proses radiasi dengan sebuah foton hυ dapat ditentukan dan kemudian W dapat diperoleh dengan rumus sebagai berikut.

(2.66)

Metoda ini sering digunakan untuk menentukan energi ionisasi dan afinitas elektron.

2.6.2 Muatan inti efektif dan aturan untuk menghitung konstanta perisai

Dalam memperhitungkan periodisitas dalam konfigurasi elektron, muatan efektif dari inti atom secara dekat berkaitan dengan periodisitas dalam energi ionisasi dan afinitas elektron. Marilah kita mempelajari bagaimana muatan inti efektif bergantung pada efek perisai sebagaimana yang dijelaskan pada bagian 2.3.

Dalam usaha untuk mendapatkan muatan inti efektif , konstanta perisai s harus ditentukan disamping bilangan atom Z. Konstanta perisai s dapat dengan mudah diperkirakan dengan menggunakan aturan-aturan sebagai berikut.

[Aturan-aturan untuk menghitung konstanta perisai]

  1. Karena efek perisai disebabkan oleh gaya tolak-menolak oleh elektron yang lain terhadap elektron yang menjadi perhatian, konstanta perisai dapat diperkirakan sebagai penjumlahan atas kontribusi seluruh elektron-elektron secara individual.
  2. Karena efek perisai sangat bergantung pada lokasi elektron lokasi elektron-elektron, baik itu di sebelah dalam atau luar dari elektron yang menjadi perhatian, sebagaimana disebutkan dalam bagian 2.3, posisi-posisi relatif dari orbital elektron diklasifikasikan dalam kelompok-kelompok berikut dan dipisahkan dengan garis miring.
  3. Dari kiri ke kanan, orbital berkembang dari yang terdalam hingga yang terluar. ns dan np berada pada kelompok yang sama dengan memperhatikan kesamaan lokasi dari orbital-orbital ini.

  4. Kontribusi yang diberikan oleh elektron dalam kelompok terluar adalah sama dengan 0, karena mereka tidak menyebabkan efek perisai.
  5. Kontribusi oleh elektron dalam kelompok yang sama dapat dinyatakan sebesar 1/3, dikarenakan efek perisai yang tidak lengkap dan berkaitan juga dengan probabilitas relatif dari elektron-elektron tersebut berada pada daerah yang lebih dalam.
  6. Kontribusi dari elektron dari kelompok dalam adalah sama dengan 1, karena elektron dalam akan memberikan efek perisai yang lengkap.

Aturan-aturan di atas merupakan versi yang lebih sederhana dari aturan Slater pada tahun 1930, yang mana bagian utama saja yang digunakan. Aturan (1)-(3) adalah sama. Dan untuk aturan (4), Slater memperkenalkan sedikit perbedaan untuk 1s dan orbital yang lain, 0.3 untuk 1s dan 0.35 untuk yang lainnya. Aturan (5) adalah sama kecuali untuk elektron pada ns dan np, di mana Slater meninjau elektron dalam (n-1)s atau (n-1)p memiliki kontribusi sebesar 0.85 untuk perisai terhadap elektron yang berada pada kulit ke-n, disebabkan oleh efek perisai yang tidak lengkap dan dikarenakan oleh kulit elektron yang saling tumpang tindih. Aturan Slater telah digunakan untuk membangun fungsi orbital atomik dengan perlakuan yang sederhana untuk berbagai atom dan mereka memainkan peranan yang sangat penting terutama pada saat-saat awal perkembangan kimia kuantum. Fungsi orbital atomik dengan bentuk yang diusulkan oleh J. C. Slater disebut sebagai orbital tipe Slater (Slater Type Orbital/STO) dan digunakan dalam paket program terakhir untuk kimia kuantum.

2.6.3 Muatan efektif inti dan energi ionisasi

Elektron yang tidak terikat secara erat dalam kulit elektron terluar adalah elektron yang penting yang harus ditinjau untuk menentukan energi ionisasi atom. Marilah kita memperkirakan muatan efektif inti untuk sebuah elektron di kulit elektron terluar dengan menggunakan aturan konstanta perisai yang sebutkan sebelumnya. Sebagai contoh, kita akan memperhatikan efek perisai pada sebuah elektron 2p pada sebuah atom Flor, F(Z = 9). Konfigurasi elektron untuk sebuah atom F adalah sebagai berikut:

Pada sisi sebelah dalam dari elektron 2p yang ditinjau, terdapat dua elektron 1s yang akan memberikan kontribusi sebesar 1 x 2 berdasarkan aturan (5). Dalam daerah yang sama dengan 2p, terdapat enam elektron secara bersama-sama, yaitu dua elektron 2s dan empat elektron (5-1 = 4) dalam 2p dan akan memberikan kontribusi sebesar 1/3 x 6 berdasarkan aturan (4). Dengan demikian, s = 1×2 + 1/6 = 4, dan ini akan menghasilkan muatan inti efektif sebesar = Z − s = 9 − 4 = 5

Tabel 2.7 menunjukkan muatan efektif inti untuk sebuah elektron dalam kulit terluar pada atom dari hidrogen H hingga argon Ar, yang diperkirakan dengan menggunakan aturan di atas untuk konstanta perisai. Gambaran (1)-(5) memberikan bahwa periodisitas dalam energi ionisasi sekarang dapat dibahas dengan menggunakan muatan inti efektif sebagaimana terdapat dalam tabel. Karena energi ionisasi meningkat, ini berkaitan dengan meningkatnya gaya tarik-menarik oleh inti dan harus memberikan dua kecenderungan berikut.

(Kecenderungan 1): Energi ionisasi meningkat dengan meningkatnya muatan inti efektif dan disebabkan oleh kebergantungan gaya Coulomb pada muatan listrik.

(Kecenderungan 2): Energi ionisasi akan menurun jika kulit elektron semakin berada di luar dan ini disebabkan oleh kebergantungan gaya Coulomb atas jarak.

Dalam baris di dalam tabel periodik, elektron valensi akan berada pada kulit elektron yang sama dan muatan inti efektif akan meningkat jika bergerak dari kiri ke kanan. Hal ini mengikuti kecenderungan 1 dan menjelaskan gambaran 3 bahwa sepanjang baris yang sama energi ionisasi akan meningkat dari kiri ke kanan. Jika kita bergerak dari sisi ujung sebelah kanan menuju puncak dari baris berikutnya, kulit elektron akan bergerak menuju daerah lebih luar (kecenderungan 2) yang berkaitan dengan penurunan tiba-tiba dari muatan inti efektif (kecenderungan 1) dan karenanya kecenderungan-kecenderungan ini menjelaskan nilai maksimum pada sisi ujung di sebelah kanan (gambaran 1) dan minimum pada ujung sebelah kiri (gambaran 2). Pada grup yang sama muatan inti efektif adalah sama kecuali untuk perubahan antara He dan Ne dalam atom-atom gas mulia dan kulit elektron terluar memberikan kontribusi pada unsur yang lebih rendah. Ini akan memberikan situasi di mana baris yang lebih rendah akan memberikan energi ionisasi yang lebih rendah (gambaran 5). Pada perubahan pada He dan Ne, sangat sulit untuk menebak susunan relatif dikarenakan kecenderungan 1 dan kecenderungan 2 bekerja secara berlawanan. Nilai hasil eksperimen menunjukkan penurunan yang berbeda dari He ke Ne dan ini menunjukkan akan kecenderungan 2, efek dari jarak dari kulit K hingga L, lebih penting pada besaran energi ionisasi. Efek ini dapat juga dipahami dari penurunan yang besar pada energi ionisasi dari 13.6 eV (H) menjadi 5.4 eV (Li) meskipun terdapat kesamaan muatan efektif inti.

Gambaran 4 untuk nilai eksperimental dari energi ionisasi mengandung perubahan lebih lanjut dan ini tidak dapat dijelaskan dengan kecenderungan 1 dan kecenderungan 2. Perubahan dari grup 2 hingga ke grup 13 adalah disebabkan oleh perubahan pada subkulit elektron dari ns hingga np. Sebuah elektron dalam sebuah orbital s memiliki probabilitas yang tinggi untuk mendekati inti dibandingkan dengan elektron dalam sebuah orbital p. Karena energi potensial dari interaksi Coulomb adalah berbanding dengan kebalikan dari jaraknya, kelakuan di sekitar ini adalah yang paling efektif. Dengan demikian maka efek perisai dari elektron s jauh lebih kecil dibandingkan dengan elektron p. Ini akan mengakibatkan bahwa muatan inti efektif untuk elektron s menjadi lebih besar dibandingkan dengan untuk elektron p. Efek ini menjelaskan perbedaan dari energi ionisasi jika kita bergerak dari grup 2 hingga grup 13. Perubahan dari grup 15 menuju grup 16 dapat dipahami dengan jelas ketika konfigurasi elektron dari atom N dan O dibandingkan secara lebih detil. N memiliki konfigurasi [He](2s)2(2px)2(2py)1(2pz)1, sementara O memiliki sebuah konfigurasi [He](2s)2(2px)1(2py)1(2pz)1. Dalam sebuah atom O, sebuah elektron ditambahkan dalam orbital 2p yang sama, yang mengakibatkan tolakan elektron yang lebih besar untuk meningkatkan energi elektron dalam kulit elektron terluar dan karenanya ionisasi energi akan menurun.

Tabel 2.7 Muatan inti efektif untuk sebuah elektron dalam kulit elektron terluar.

2.6.4 Muatan inti efektif dan afinitas elektron

Sekarang marilah kita mempelajari periodisitas afinitas elektron dalam atom dengan didasarkan pada muatan inti efektif. Karena afinitas elektron sama dengan energi untuk mengambil sebuah elektron tambahan, kita mempertimbangkan muatan inti efektif untuk sebuah elektron pada kulit elektron terluar dalam ion mononegatif. Untuk sebuah elektron 2p dari ion F (Z = 9) sebagai contoh, konfigurasi elektron untuk ion F diberikan oleh

Terdapat dua elektron 1s di sisi dalam dari elektron 2p yang dipilih dan dengan demikian efek perisainya akan bernilai 1 x 2 berdasarkan aturan (5). Elektron dalam grup yang sama dengan elektron 2p yang dipilih seluruhnya berjumlah tujuh, dua elektron 2s dan 6 窶・1 = 5 elektron 2p yang akan memberikan kontribusi sebesar &frac13;7 secara keseluruhan berdasarkan aturan (4). Ini akan memberikan konstanta perisai menjadi s = 1 x 2 + &frac13; x 7 = 13/3 = 4.33. Dengan demikian muatan inti efektif dapat diperkirakan dan diperoleh = Z − s = 9 − 13/3 = 14/3 = 4,67. Jika sebuah ion negatif dibentuk untuk sebuah atom Ne dengan sebuah bilangan atom Z = 10 , elektron terluar dari Ne adalah berada dalam sebuah orbital 3s. Konstanta perisai untuk elektron 3s ini menjadi s = 10 , karena bilangan dari elektron terdalamnya adalah 10. Karenanya, muatan ini efektif menjadi = 10 − 10 = 0.

Tabel 2.8 memberikan muatan inti efektif untuk sebuah elektron yang berada pada kulit terluar dari sebuah ion mononegatif dari atom hidrogen H hingga argon Ar.

Tabel 2.8 Muatan inti efektif untuk sebuah elektron dalam kulit elektron terluar dalam ion mononegatif

Meskipun periodisitas dari muatan inti efektif untuk ion mononegatif sama dengan untuk atom netral, posisi dari nilai maksimum dan nilai minimum bergeser ke bilangan atom yang lebih rendah masing-masing sebanyak satu. Ini akan mengakibatkan bahwa afinitas elektron akan memberikan nilai maksimumnya pada atom halogen dan minimumnya pada atom gas mulia. Nilai maksimum dan minimum yang kecil sebagaimana pada gambaran 4 dalam energi ionisasi juga ditemukan pada posisi yang bergeser ke kiri sebanyak satu; pada grup 2 dan 15, nilainya akan menjadi lebih kecil terhadap atom yang berada di sebelah kirinya.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

.

2.7 Atom tereksitasi dan term simbol

Dalam sebuah atom hidrogenik, keadaan n ≥ 2 disebut sebagai keadaan tereksitasi. Atom-atom dalam keadaan tereksitasi dengan ekses energi lebih besar dibandingkan energi keadaan dasar (n = 1) disebut sebagai atom-atom tereksitasi. Atom tereksitasi dapat dibentuk melalui kelebihan energi yang berasal reaksi kimia dalam sebuah pembakaran atau lecutan listrik. Berlawanan dengan atom hidrogenik, konfigurasi dari atom-atom tereksitasi secara umum sangat rumit, karena terdapat dua atau lebih elektron-elektron. Sekarang marilah kita mempelajari fungsi gelombang keadaan tereksitasi dari sebuah atom helium sebagai suatu contoh untuk sistem dengan elektron banyak. Kemudian kita akan juga mempelajari term simbol yang mana akan sangat berguna dalam klasifikasi spektroskopi tingkat-tingkat energi dan juga hubungannya dengan momentum sudut angular.

2.7.1 Keadaan dasar sebuah atom helium

Sebagaimana telah dipelajari, konfigurasi elektron untuk keadaaan dasar atom helium adalah (1s)2. Dan hal ini berkaitan dengan fungsi gelombang determinan untuk konfigurasi ini yang diberikan oleh

(2.67)

Dalam hal ini, koordinat elektron dinyatakan secara sederhana dengan nomor 1 atau 2 sebagai ganti penulisan q1 atau q2. ψ1 dan ψ2 adalah fungsi orbital dari elektron termasuk di dalamnya spin dan mereka itu dibentuk dari sebuah kombinasi dari fungsi orbital dari koordinat spasial φ1s dan fungsi spin α atau β.

(2.68)

(2.69)

Dengan menggunakan persamaan-persamaan ini dan memperluas determinan di atas, kita akan mendapatkan rumus berikut.

(2.70)

φ1s(1)φ1s(2) dalam rumus ini adalah simetrik terhadap permutasi elektron-elektron, sementara yang berada di dalam tanda { } bergantung pada spin dan bersifat antisimetrik terhadap permutasi dari elektron. Selanjutnya hal ini akan mengakibatkan bahwa secara keseluruhan rumus ini adalah simetrik(+1) x antisimetrik(-1) = antisimetrik(-1).

2.7.2 Keadaan tereksitasi dari sebuah atom helium

Marilah sekarang kita meninjau sebuah konfigurasi elektron (1s)1(2s)1, yang mana sebuah elektron dieksitasikan ke orbital 2s dari orbital 1s. Termasuk juga spin elektron, kita akan mendapatkan empat buah konfigurasi (a)-(d) sebagaimana ditunjukan dalam Gambar 2.9.

Dengan menggunakan fungsi orbital spasial φ1s dan φ2s bersama dengan fungsi spin α, β, marilah kita membentuk fungsi dengan sistem dua elektron. Kita akan mendapatkan fungsi simetrik dan antisimetrik sebagai berikut.

Gambar 2.9 Konfigurasi elektron untuk (1s)1(2s)1

Fungsi simetrik untuk bagian spasial diberikan oleh

(2.71)

Dan fungsi antisimetriknya untuk bagian spasialnya diberikan oleh

(2.72)

Terdapat tiga fungsi simetrik untuk bagian spin sebagai berikut

Dan fungsi spin antisimetrik diberikan oleh

(2.76)

Kombinasi dari fungsi-fungsi ini akan menghasilkan fungsi antisimetrik sebagai berikut.

Untuk fungsi spasial yang simetrik, terdapat hanya satu fungsi spin yang antisimetrik dan dengan demikian kita akan memperoleh

(2.77)

Keadaan tereksitasinya yang dinyatakan dengan persamaan ini disebut sebagai keadaan singlet.

Untuk fungsi spasial yang antisimetrik, terdapat tiga fungsi spin yang simetrik yang akan menghasilkan tiga buah kombinasi dari fungsi antisimetrik sebagai berikut.

Keadaan tereksitasi yang dinyatakan dengan fungsi-fungsi ini disebut sebagai keadaan triplet. Eksperimen menunjukkan bahwa keadaan triplet jauh lebih stabil dengan energi yang lebih rendah jika dibandingkan dengan keadaan singlet. Ini dapat dikonfirmasi dengan perhitungan teoritis terhadap nilai ekspektasi. Energi-energi untuk Φ2, Φ3, Φ4 adalah sama dan mereka adalah keadaan terdegenerasi lipat tiga.

2.7.3 Momentum sudut dan simbol spektral untuk sistem elektron banyak

Dalam usaha untuk memahami keadaan tereksitasi dari atom-atom, momentum sudut perlu untuk dipelajari secara detil. Sebagaimana telah dipelajari pada bagian 1.13, momentum sudut adalah sebuah vektor dengan besaran dan arah. Momentum sudut angular dari sebuah sistem elektron banyak diberikan sebagai sebuah penjumlahan vektor dari setiap momentum sudut elektron-elektronnya dan disebut sebagai momentum sudut resultan. Penjumlahan yang demikian itu dapat dilakukan untuk momentum suidut orbital Îi, momentum sudut spin i dan momentum sudut total yang merupakan penjumlahan i = Îi + i. Dengan demikian, momentum sudut orbital resultan , momentum sudut spin resultan dan momentum sudut total resultan didefinisikan dengan persamaan-persamaan berikut.

Karena i = Îi + i, kita akan mendapatkan = +

Ketiga tipe momentum sudut untuk elektron akan memenuhi persamaan eigen sebagai berikut

Indeks bawah i harus dipasangkan pada operator dan bilangan kuantum dalam usaha untuk menandai elektron ke-i. Bilangan kuantum m untuk komponen harus memiliki indeks bawah yang menyatakan l, s, j.

Momentum sudut resultan yang diperkenalkan di atas harus juga memenuhi persamaan eigen yang sama sebagai berikut.

L, S, J adalah bilangan kuantum yang berhubungan dengan kuadrat dari operator dan ML, MS, MJ adalah bilangan kuantum yang berhubungan dengan komponen-komponennya. ML, MS, MJ sama dengan penjumlahan dari sumbangan tiap-tiap elektron.

Dengan menggunakan bilangan kuantum untuk momentum sudut resultan L, S, J dan bilangan kuantum utama n, tingkat energi atomik dinyatakan dengan simbol sebagai berikut.

(2.99)

Simbol ini sangat berguna dan penting, khususnya dalam spektroskopi atomik dan ini disebut sebagai term simbol. n adalah nilai maksimum di antara bilangan kuantum utama dari elektron dan nilai ini ditempatkan di atas. Untuk simbol {L} huruf besar S, P, D, F, G, H digunakan berkaitan dengan nilai L = 0, 1, 2, 3, 4, 5,. 2S + 1 disebut sebagai perkalian spin dan nilainya dihitung dari nilai S yang diletakkan pada bagian sebelah kiri dari huruf seperti S dan P yang berkaitan dengan simbol {L}; indeks atas untuk huruf {L} akan menjadi 3 untuk triplet dan 1 untuk singlet. Nilai dari J diletakkan sebagai indeks bawah pada sisi sebelah kanan dari hurif {L}. n dan J sering tidak dituliskan untuk penyingkatan kecuali pada saat dia diperlukan.

dan adalah saling berkomutasi dengan Ĥ, operator Hamiltonian untuk sebuah atom berelektron banyak yang diberikan dalam persamaan (2.31). Karenanya, tingkat energi yang berkaitan dengan term simbol dengan kombinasi yang sama untuk L dan S dan konfigurasi elektron yang sama dan disebut sebagai bagian LS, adalah identik dan terdegenerasi. Untuk kasus terdegenerasi, indeks bawah sebelah kanan J dapat diabaikan, karena mereka tidak terlalu penting. Akan tetapi eksperimen terkadang

menunjukkan pemisahan dari bagian LS. Salah satu penyebabnya adalah interaksi spin-orbit, yang menghasilkan pemisahan yang proporsional hingga derajat ke empat dari bilangan atomik Z. Sehingga, efek ini akan sangat penting pada atom-atom berat. Pada sisi yang lain, terdapat pemisahan yang disebabkan oleh medan magnetik luar yang disebut sebagai efek Zeeman.

Dalam kasus atom hidrogenik, adalah sangat mudah untuk mendapatkan term simbol, karena sistemnya memiliki satu elektron. Sebagai contoh, marilah kita meninjau sebuah keadaan dari satu elektron 2p. Karena sebuah elektron 2p, n = 2 dan s = 1/2 dengan ms = ±1/2. Untuk sebuah sistem elektron tunggal, Ms = ms dan dengan demikian S = 1/2 dan kemudian akan menghasilkan perkalian spin 2S + 1 = 2 x (1/2) + 1 = 2, yang disebut sebagai doblet. Dalam hal yang sama, yaitu Ml = ml dan dengan demikian maka L = 1 dan ini akan berkaitan dengan huruf P untuk simbol {L}. Untuk menentukan besaran J, kita harus mengetahui aturan untuk nilai yang diijinkan untuk momentum sudut yang terkopel.

[Aturan untuk nilai-nilai yang mungkin dari momentum sudut yang terkopel]

Kita memperkenalkan sebuah momentum sudut terkopel = 1 + 2 di mana 1 dan J2 kedua-duanya adalah momentum sudut yang dapat komut satu dengan yang lainnya. Dengan menggunakan bilangan kuantum J1 dan J2 untuk 1 dan 2, maka nilai yang diijinkan untuk bilangan kuantum J untuk kuadrat dari adalah sebagai berikut:

(2.100)

Karena adalah vektor yang tekopel dari L dan S , besaran dari momentum sudut terkopel memiliki nilai di antara nilai maksimum dari + dan minimum dari |L – S|. Dalam kasus sebuah elektron 2p, L = 1 dan S = 1/2, dan dengan demikian kasus yang mungkin adalah J = 1 + 1/2 = 3/2 atau J = 1-1/2 = 1/2. Term simbol untuk (2p)1 diberikan oleh

Dua bentuk simbol ini memiliki kombinasi L dan S yang sama dan mereka dalam keadaan terdegenerasi jika interaksi spin-orbit dapat diabaikan. Dalam kasus atom hidrogen pemisahan yang disebabkan oleh interaksi spin-orbit sangatlah kecil dan 2P1/2 hanya sebesar 0.365 cm-1 lebih rendah dibandingkan dengan bentuk yang lain.

Contoh 2.5 Verifikasikan bahwa fungsi spin Γ1 – Γ4 untuk sebuah sistem dengan dua elektron (persamaan 2.73-2.76) adalah fungsi eigen dari operator komponen-z dari resultan antara momentum sudut dan spin z dan dapatkan nilai individual dari Ms.

(Jawaban) Pertama turunkan persamaan-persamaan dalam bentuk zΓ = MShΓ , dan kedua dapatkan nilai dari Ms.

(1) Γ1 = α(1)α(2)

Dengan demikian Γ1 adalah sebuah fungsi eigen dari Sz, dan bilangan kuantum Ms = 1.

(2) Γ1 = β(1)β(2)

Dengan demikian Γ2 adalah sebuah fungsi eigen dari Sz, dan bilangan kuantum Ms = &minus1.

(3) Γ3 = {α(1)β(2)+β(1)α (2)}/√2

Dengan demikian Γ3 adalah sebuah fungsi eigen dari Sz, dan bilangan kuantum Ms = 0.

(4) Γ4 = {α(1) (2) – β (1) (2)}/√2

Dengan demikian Γ4 adalah sebuah fungsi eigen dari Sz, dan bilangan kuantum Ms = 0.

Berikutnya marilah kita mempelajari term simbol dari keadaan tereksitasi (1s)1(2s)1 untuk sebuah atom He. Bilangan kuantum utama terbesar adalah untuk sebuah elektron 2s dan dengan demikian n = 2. Karena seluruh elektron berada dalam orbital s dengan ml = 0, kemudian L = 0 + 0 = 0. Nilai dari S bergantung pada perlipatan (multiciplity) spin, berupa singlet atau tripet. Dari contoh 2.5, nilai yang mungkin untuk Ms adalah 0 dan ini akan memberikan kondisi S = 0 dan 2S + 1 = 0 + 1 = 1. Dari S = 0 dan L = 0, J = 0 + 0 = 0. Ini akan menghasilkan term simbol untuk keadaan singlet tereksitasi yang diberikan dengan 21S0.

Untuk keadaan tereksitasi triplet, terdapat tiga nilai dari Ms, 1 untuk Γ1, 0 untuk Γ3, dan -1 untuk Γ2, dan dengan demikian S =1. Dengan memperhatikan bahwa L = 0, kita menemukan J = 1 + 0 = 1 − 0 = 1. Ini akan memberikan term simbol keadaan tereksitasi triplet yang diberikan oleh 23S1.

Aturan-aturan berikut sangat berguna untuk mendapatkan term simbol.

[Bagaimana mendapatkan term simbol]

  1. Ketika sebuah subkulit dalam kondisi penuh terisi oleh elektron, elektron-elektron dalam subkulit dapat tidak diperhitungkan karena kontribusi pada Ms dan ML adalah sama dengan nol, sebagai contoh, untuk memperoleh term simbol untuk keadaan dasar Li (1s)2(2s)1, kita mungkin hanya memperhatikan (2s)1 dan mengabaikan (1s)2.
  2. Ketika sebuah subkulit dengan sebuah bilangan kuantum azimuth l dipenuhi oleh elektron, konfigurasinya dapat dinyatakan dengan (n{l})(4l+2), dimana l = 0, 1, 2 masing-masing berkaitan dengan s, p, d. Sebuah pasangan subkulit yang tidak terisi penuh, (n{l})(4l+2 竏・i>k) dan (n{l})(k), memberikan term simbol yang sama. Sebagai contoh, (2p)5 dan (2p)1 akan memberikan himpunan yang sama dari simbol spektral, 22P3/2 dan 22P1/2.

Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

.

Latihan

  1. Hitunglah energi sebuah foton yang dipancarkan dalam sebuah transisi elektron dalam ion helium monopositif dari sebuah keadaan tereksitasi dengan bilangan kuantum utama n = 2 ke keadaan dasar n = 1.
  2. Tunjukkan bahwa sebuah rotasi yang berlawanan dengan arah jarum jam dari orbital dy2 − z2 sebesar 45 derajat dalam bidang x-y akan membentuk orbital dxy. Buktikan bahwa orbital dz2 adalah terdiri dari kombinasi linier dari orbital dy2 − z2 dan dz2 − x2, yang mana ekivalen dengan orbital dx2 − y2
  3. Hitunglah jarak di mana fungsi distribusi radial untuk orbital 1s dan 2p dari sebuah atom hidrogen maksimum dan bandingkan dengan radius Bohr.
  4. Bangun fungsi gelombang dengan sebuah determinan Slater untuk sebuah konfigurasi elektron dari He di mana sebuah elektron menempati orbital 1s dengan spin α dan elektron yang lainnya menempati orbital 2s dengan spin α . Tunjukkan bahwa untuk fungsi gelombang ini probabilitas untuk menemukan dua elektron pada koordinat spasial yang identik akan sama dengan nol (probabilitas untuk menemukan elektron-elektron yang menempati orbital spasial yang berbeda dengan spin yang sama pada tempat yang sama adalah nol)
  5. Bangunlah konfigurasi elektron untuk sebuah ion I.
  6. Grup yang mana dalam tabel periodik yang memberikan nilai maksimum untuk energi (energi ionisasi kedua) yang diperlukan untuk menghasilkan ion dipositif dari ion monopositif, ketika energi-energi tersebut dibandingkan dengan sebagai fungsi dari bilangan atom? Grup mana yang akan memberikan nilai minimum? Jawablah pertanyaan ini dengan meninjau muatan inti efektif dalam daerah bilangan atomik dari 2 hingga 18.
  7. Tentukan semua fungsi gelombang untuk keadaan tereksitasi untuk keadaan tereksitasi dari He dimana satu elektron 1s dieksitasi ke orbital 2p. Tentukan term simbolnya.

Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

9 Tanggapan to “29. ATOM”

  1. determity Says:

    halaman yg ditampilin kepanjangan pak, jd kelamaan loadingnya…

  2. determity Says:

    pak ada artikel yg membahas masalah permutasi dan kombinasi pd aprtikel yg identik???

  3. junianataslima Says:

    thanks a lot sir for helping me study🙂

  4. gisnawirdya Says:

    makasih pak atas info nya, ini dapat membantu sya dalam banyak hal

  5. selvyanyayu Says:

    terima kasih pak atas informasinya, info ini sangat membantu sekali dalam proses apapun.

  6. devydestiani Says:

    trimakasih Pak atas ilmu yang telah bapak berikan🙂

  7. putudarmawan Says:

    Terimakasih atas infonya pak
    semoga ilmu ini dapat saya manfaatkan dgn baik
    dan dapat mmbntu saya ke dpannya

  8. rut kristina gratia silaban Says:

    Terimakasih atas ilmunya… semoga dapat bermanfaat dan menjadi inspirasi bagi banyak orang

  9. Desi Riskyani ( Sepdes ) Says:

    pak, apa yang bapak berikan sngat berguna untuk saya dan bisa saya pelajari lagi
    mksh pak 🙂

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s


%d blogger menyukai ini: