08. SISTEM PERIODIK

5.1 Tabel Periodik

Satu prestasi intelektual yang terbesar dalam kimia adalah tabel periodik unsur. Tabel periodik dapat dicetak dalam satu lembar kertas, tetapi apa yang terkandung di dalamnya dan apa yang dapat diberikan kepada kita sangat banyak dan tidak ternilai. Tabel ini adalah hasil jerih payah tak kenal lelah, yang berawal dari zaman Yunani, untuk mengetahui sifat materi sebenarnya. Sem ini dapat dikatakan kitab sucinya kimia. Nilai sistem periodik bukan hanya pada organisasi informasi yang telah diketahui, tetapi juga kemampuannya memprediksi sifat yang belum diketahui. Keampuhan sesungguhnya tabel periodik terletak di sini.

a. Usulan-usulan sebelum Mendeleev

Konsep unsur merupakan konsep yang sangat tua, sejak jaman Yunani, Menurut filsuf Yunani, materi dibentuk atas empat unsur: tanah, air, api dan udara. Pandangan ini perlahan ditinggalkan, dan akhirnya di abad 17 definisi unsur yang diberikan oleh kimiawan Inggris Robert Boyle (16271691) menggantikan definisi lama tadi. Boyle menyatakan bahwa unsur adalah zat yang tidak dapat diuraikan menjadi zat yang lebih sederhana.

Lavoisier mengusulkan daftar unsur dalam bukunya “Traite Elementire de Chemie”. Walaupun ia memasukkan cahaya dan panas dalam daftarnya, anggota lain daftar adalah apa yang kita sebut sebagai unsur sampai saat ini. Selain itu, ia menambahkan pada daftar unsur-unsur yang belum dideteksi tetapi ia yakini keberadaannya. Misalnya, khlorin pada waktu itu belum diisolasi, tetapi ia menambahkannya pada tabel sebagai radikal dari asam muriatik. Demikian juga, natrium dan kalium ada juga dalam tabel.

Di awal abad 19, unsur-unsur ini diisolasi dengan elektrolisis, dan daftar unsur perlahan diperluas. Di pertengahan abad 19, analisis spektroskopi, metoda bari mendeteksi unsur dikenalkan dan mempercepat pertambahan daftar ini. Walaupun disambut gembira oleh kimiawan, masalahmasalh baru muncul. Salah satu pertanyaan adalah ‘Apakah jumlah unsur terbatas?’ dan pertanyaan lain adalah ‘Apakah sifat unsur-unsur diharapkan akan mempunyai keteraturan tertentu?’

Penemuan unsu-unsur baru mengkatalisi diskusi-diskusi semacam ini. Ketika iodin ditemukan di tahun 1826, kimiawan Jerman Johann Wolfgang Döbereiner (1780-1849) mencatat kemiripan antara unsur ini dengan unsur yang telah dikenal khlorin dan bromin. Ia juga mendeteksi trio unsur mirip lain. Inilah yang dikenal dengan teori triade Döbereiner.

Tabel 5.1 Triade Döbereiner


litium (Li) kalsium (Ca) Khlorin (Cl) sulfur (S) mangan (Mn)
Natrium (Na) stronsium (Sr) Bromin (Br) selenium (Se) khromium (Cr)
kalium (K) barium (Ba) iodin (I) telurium (Te) Besi (Fe)

b. Prediksi Mendeleev dan kebenarannya

Banyak ide pengelompokan unsur yang lain yang diajukan tetapi tidak memuaskan masyarakat ilmiah waktu itu. Namun, teori yang diusulkan oleh kimiawan Rusia Dmitrij Ivanovich Mendeleev (1834-1907), dan secara independen oleh kimiawan Jerman Julius Lothar Meyer (1830-1895) berbeda dengan usulan-usulan lain dan lebih persuasif. Keduanya mempunyai pandangan sama sebagai berikut:

Pandangan Mendeleev dan Meyer

  1. Daftar unsur yang ada waktu itu mungkin belum lengkap.
  2. Diharapkan sifat unsur bervariasi secara sistematik. Jadi sifat unsur yang belum diketahui dapat diprediksi.

Awalnya teori Mendeleev gagal menarik perhatian. Namun, di tahun 1875, ditunjukkan bahwa unsur baru galium ditemukan oleh kimiawan Perancis Paul Emile Lecoq de Boisbaudran (18381912) ternyata bukan lain adalah eka-aluminum yang keberadaan dan sifatnya telah diprediksikan oleh Mendeleev. Jadi, signifikansi teori Mendeleev dan Meyer secara perlahan diterima. Tabel 5.2 memberikan sifat yang diprediksi oleh Mendeleev untuk unsur yang saat itu belum diketahui ekasilikon dan sifat germanium yang ditemukan oleh kimiawan Jerman Clemens Alexander Winkler (1838-1904).

Tabel 5.2 Prediksi sifat unsu eka-silikon oleh Mendeleev dan perbandingannya dengan sifat yang kemudian ditemukan.

Sifat eka-silicon germanium
Massa atom relatif 72 72,32
Rapat massa 5,5 5,47
Volume atom 13 13,22
Valensi 4 4
Kalor jenis 0,073 0,076
Rapat jenis dioksida 4,7 4,703
Titik didih tetrakhlorida (°C) <100 86

Mendeleev mempublikasikan tabel yang dapat dianggap sebagai asal mula tabel periodik modern. Dalam menyiapkan tabelnya, Mendeleev awalnya menyusun unsur berdasarkan urutan massa atomnya, sebagaimana pendahulunya. Namun, ia menyatakan keperiodikan sifat, dan kadang menyusun ulang unsur-unsur, yang berakibat membalikkan urutan massa atom.

Lebih lanjut, situasinya diperumit sebab prosedur menentukan massa atom belum distandarkan, dan kadang kimiawan mungkin menggunakan massa atom yang berbeda untuk unsur yang sama. Dilema ini secara perlahan diatasi setelah International Chemical Congress (Kongres ini diadakan di tahun 1860 di Karlsruhe, Jerman. Tujuan kongres ini untuk mendiskusikan masalah penyatuan massa atom. Dalam kesempatan ini Cannizzaro mengenalkan teori Avogadro.) pertama yang dihadiri oleh Mendeleev, namun kesukaran-kesukaran tetap ada.

Dengan mendasarkan pada valensi dalam menentukan massa atom, Mendeleev sedikit banyak menyelesaikan masalah (Tabel 5.3).

Tabel 5.3 Tabel Periodik awal Mendeleev (1869).

c. Tabel Periodik dan konfigurasi elektron

Tabel periodik secara terus menerus bertambah unsurnya setelah tabel periodik diusulkan Mendeleev. Sementara, muncul berbagai masalah. Salah satu masalah penting adalah bagaimana menangani gas mulia, unsur transisi dan unsur tanah jarang. Semua masalah ini dengan baik diselesaikan dan membuat tabel periodik lebih bernilai. Tabel periodik, kitab suci kimia, harus dirujuk secara rutin.

Golongan baru gas mulia dengan mudah disisipkan di antara unsur positif yang sangat reaktif, logam alkali (golongan 1) dan unsur negatif yang sangat reaktif, halogen (golongan 7).

Unsur logam transisi diakomodasi dalam tabel periodik dengan menyisipkan periode panjang walaupun rasionalnya tidak terlalu jelas. Masalah yang nyata adalah lantanoid. Lantanoid ditangani sebagai unsur “ekstra” dan ditempatkan secara marjinal di luar bagian utama tabel periodik. Namun, sebenarnya prosedur ini tidak menyelesaikan masalah utama. Pertama, mengapa unsur ekstra ini ada tidak jelas, bahkan lebih menjadi teka-teki adalah pertanyaan: apakah ada batas jumlah unsur dalam tabel periodik? Karena ada unsur-unsur yang sangat mirip, sangat sukar untuk memutuskan berapa banyak unsur dapat ada di alam.

Teori Bohr dan percobaan Moseley menghasilkan penyelesaian teoritik masalah-masalah ini. Penjelasan tabel periodik dari periode pertama sampai periode ketiga dapat dijelaskan dengan teori konfigurasi elektron yang dipaparkan di bab 4. Periode pertama (1H dan 2He) berkaitan dengan proses memasuki orbital 1s. Demikian juga periode kedua (dari 3Li sampai 10Ne) berkaitan dengan pengisian orbital 1s, 2s dan 2p, dan periode ke-3 (dari 11Na sampai 18Ar) berkaitan dengan pengisian orbital 1s, 2s, 2p, 3s dan 3p.

Periode panjang dimulai periode ke-4. Penjelasan atas hal ini adalah karena bentuk orbital d yang berbeda drastis dari lingkaran, dan jadi energi elektron 3d bahkan lebih tinggi dari 4s. Akibatnya, dalam periode ke-4, elektron akan mengisi orbital 4s (19K dan 20Ca) segera setelah pengisian orbital 3s dan 3p, melompati orbital 3d. Kemudian elektron mulai menempati orbital 3d. Proses ini berkaitan dengan sepuluh unsur dari 21Sc sampai 30Zn. Proses pengisian orbital 4p selanjutnya berkaitan dengan enam unsur dari 31Ga sampai 36Kr. Inilah alasan mengapa periode ke-4 mengandung 18 unsur bukan 8. Energi elektron orbital 4f jauh lebih tinggi dari orbital 4d dan dengan demikian elektron 4f tidak memainkan peran pada unsur periode ke-4.

Tabel 5.4a Konfigurasi elektron atom 1H-54Xe. Tabel 5.4b Konfigurasi elektron atom (55Cs-103Lr).

Periode ke-5 mirip dengan periode ke-4. Elektron akan mengisi orbital 5s, 4d dan 5p dalam urutan ini. Akibatnya periode ke-5 akan memiliki 18 unsur. Orbital 4f belum terlibat dan inilah yang merupakan alasan mengapa jumlah unsur di periode 5 adalah 18.

Jumlah unsur yang dimasukkan dalam periode ke-6 berjumlah 32 sebab terlibat 7×2 = 14 unsur yang berkaitan dengan pengisian orbital 4f. Awalnya elektron mengisi orbital 6s (55Cs dan 56Ba). Walaupun ada bebrapa kekecualian, unsur dari 57La sampai 80Hg berkaitan dengan pengisian orbital 4f dan kemudian 5d. Deret lantanoid (sampai 71Lu) unsur tanah jarang berkaitan dengan pengisian orbital 4f. Setelah proses ini, enam unsur golongan utama (81Tl sampai 86Rn) mengikuti, hal ini berkaitan dengan pengisian orbital 6p.

Periode ke-7 mulai dengan pengisian orbital 7s (87Fr dan 88Ra) diikuti dengan pengisian orbital 5f menghasilkan deret aktinoid unsur tanah jarang (dari 89Ac sampai unsur no 103). Dunia unsur akan meluas lebih lanjut, tetapi di antara unsur-unsur yang ada alami, unsur dengan nomor atom terbesar adalah 92U. Unsur setelah 92U adalah unsur-unsur buatan dengan waktu paruh yang sangat pendek. Sukar untuk meramalkan perpanjangan daftar unsur semacam ini, tetapi sangat mungkin unsur baru akan sangat pendek waktu paruhnya.

Di Tabel 5.5, dirangkumkan hubungan antara tabel periodik dan konfigurasi elektron.

Tabel 5.5 Konfigurasi elektron tiap perioda.

period orbital yang diisi jumlah unsur
1 (pendek) 1s 2
2 (pendek) 2s, 2p 2 + 6 = 8
3 (pendek) 3s, 3p 2 + 6 = 8
4 (panjang) 3d, 4s, 4p 2 + 6 + 10 = 18
5 (panjang) 4d, 5s, 5p 2 + 6 + 10 = 18
6 (panjang) 4f, 5d, 6s, 6p 2 + 6 + 10 + 14 = 32

Contoh Soal

5.1 Konfigurasi elektron lawrensium. Konfigurasi elektron 89Ac adalah 86Rn.6d17s2. Tuliskan konfigurasi elektron lawrensium 103Lr.

Jawab:

Lawrensium memiliki 14 elektron lebih banyak dari aktinium. Karena elektron akan mengisi orbital 5f, konfigurasi elektronnya 103Lr adalah 86Rn. 5f146d17s2.

Sebagaimana dipaparkan sebelumnhya, hukumMoseley menyatakan bahwa ada hubungan antara panjang gelombang λ sinar-X karakteristik unsur dan muatan listrik intinya Z (yakni, nomor atom): 1/λ = c(Z – s)2 (2.11)

Berkat hukum Moseley, unsur-unsur kini dapat disebut dengan menyebut nomor atomnya. Kini kita dapat dengan tepat mengetahui jumlah unsur di alam.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

5.2 Sifat periodik unsur

a. Energi Ionisasi pertama

Bila unsur-unsur disusun sesuai dengan massa atomnya, sifat unsur atau senyawa menunjukkan keperiodikan, dan pengamatan ini berujung pada penemuan hukum periodik. Konfigurasi elektron unsur menentukan tidak hanya sifat kimia unsur tetapi juga sifat fisiknya. Keperiodikan jelas ditunjukkan sebab energi ionisasi atom secara langsung ditentukan oleh konfigurasi elektron. Energi ionisasi didefinisikan sebagai kalor reaksi yang dibutuhkan untuk mengeluarkan elektron dari atom netral, misalnya, untuk natrium:

Na(g) →Na+(g) + e- (5.1)

Energi ionisasi pertama, energi yang diperlukan untuk memindahkan elektron pertama, menunjukkan keperodikan yang sangat jelas sebagaimana terlihat di gambar 5.1. Untuk periode manapun, energi ionisasi meningkat dengan meningkatnya nomor atom dan mencapai maksium pada gas mulia. Daam golongan yang sama energi ionisasi menurun dengan naiknya nomor atom. Kecenderungan seperti ini dapat dijelaskan dengan jumlah elektron valensi, muatan inti, dan jumlah elektron dalam.

Energi ionisasi kedua dan ketiga didefinisikan sebagai energi yang diperlukan untuk memindahkan elektron kedua dan ketiga.

Gambar 5.1 Energi ionisasi pertama atom. Untuk setiap perioda, energi ionisai minimum untuk logam alkali dan maksimumnya untuk gas mulia.

Contoh Soal

5.2 Energi ionisasi.

Tiga atom memiliki konfigurasi elektron sebagai berikut

(1) 1s22s22p6
(2) 1s22s22p63s1
(3) 1s22s22p63s2

Manakah yang memiliki energi ionisasi tertinggi? Usulkan atom manakah yang energi ionisasi keduanya tertinggi?

Jawab. Atom (1) memiliki kulit penuh, dan akan memiliki enerhi ionisasi pertama tertinggi. Atom (2) dan(3) berturut-turut adalah natrium dan magnesium. Elektron kedua yang akan dikeluarkan adalah elektron 3s untuk Na dan elektron 3s untuk Mg. Anda dapat membayangkan bahwa elektron lebih luar akan lebih mudah dikeluarkan dibandingkan dengan elektron yang lebih dalam.

b. Afinitas elektron dan keelektronegatifan

Afinitas elektron didefinisikan sebagai kalor reaksi saat elektron ditambahkan kepada atom netral gas, yakni dalam reaksi.

F(g) + e¯ → F¯(g) (5.2)

Nilai positif mengindikasikan reaksi eksoterm, negatif menunjukkan reaksi endoterm. Karena tidak terlalu banyak atom yang dapat ditambahi elektron pada fasa gas, data yang ada terbatas jumlahnya dibandingkan jumlah data untuk energi ionisasi. Tabel 5.6 menunjukkan bahwa afinitas elektron lebih besar untuk non logam daripada untuk logam.

Tabel 5.6 Afinitas elektron atom.


H 72,4 C 122,5 F 322,3
Li 59, O 141,8 Cl 348,3
Na 54,0 P 72,4 Br 324,2
K 48,2 S 200,7 I 295,2

Besarnya kenegativan(elektron) yang didefinisikan dengan keelektronegatifan (Tabel 5.7), yang merupakan ukuran kemampuan atom mengikat elektron. Kimiawan dari Amerika Robert Sanderson Mulliken (1896-1986) mendefinisikan keelektronegativan sebanding dengan rata-rata aritmatik energi ionisasi dan afinitas elektron.

Tabel 5.7 Keelektronegativitan unsur golongan utama elements (Pauling)

Pauling mendefinisikan perbedaan keelektronegativan antara dua atom A dan B sebagai perbedaan energi ikatan molekul diatomik AB, AA dan BB. Anggap D(A-B), D(A-A) dan D(B-B) adalah energi ikatan masing-masing untuk AB, AA dan BB. D(A-B) lebih besar daripada rata-rata geometri D(A-A) dan D(B-B). Hal ini karena molekul hetero-diatomik lebih stabil daripada molekul homo-diatomik karena kontribusi struktur ionik. Akibatnya, ∆(A-B), yang didefinisikan sebagai berikut, akan bernilai positif:

(A-B) = D(A-B) -√D(A-A)D(B-B) > 0 (5.3)

(A-B) akan lebih besar dengan membesarnya karakter ionik. Dengan menggunakan nilai ini, Pauling mendefinisikan keelektronegativan x sebagai ukuran atom menarik elektron.

|xA -xB|= √D(A-B) (5.4)

xA dan xB adalah keelektronegativan atom A dan B.

Apapun skala keelektronegativan yang dipilih, jelas bahwa keelektronegativan meningkat dari kiri ke kanan dan menurun dari atas ke bawah. Keelketroegativan sangat bermanfaat untuk memahami sifat kimia unsur.

Informasi lain yang bermanfaat dapat disimpulkan dari Tabel 5.7. Perbedaan keelektronegativan antara dua atom yang berikatan, walaupun hanya semi kuantitatif, berhubungan erat dengan sifat ikatan kimia seperti momen dipol dan energi ikatan..

Misalnya ada distribusi muatan yang tidak sama dalam ikatan A-B (xA > xB). Pasangan muatan positif dan negatif ±q yang dipisahkan dengan jarak r akan membentuk dipol (listrik).

Arah dipol dapat direpresentasikan dengan panah yang mengarah ke pusat muatan negatif dengan awal panah berpusat di pusat muatan positif. Besarnya dipol, rq, disebut momen dipol. Momen dipol adalah besaran vektor dan besarnya adalah µ dan memiliki arah.

Besarnya momen dipol dapat ditentukan dengan percobaan tetapi arahnya tidak dapat. Momen dipol suatu molekul (momen dipol molekul) adalah resultan vektor momen dipol ikatan-ikatan yang ada dalam molekul. Bila ada simetri dalam molekul, momen dipol ikatan yang besar dapat menghilangkan satu sama lain sehingga momen dipol molekul akan kecil atau bahkan nol.

Contoh Soal 5.3 Momen dipol ikatan dan momen dipol molekul.

(a) Jawab pertanyaan berikut tentang hidrogen khlorida HCl dan karbon tetrakhlorida CCl4. Tunjukkan bagaimana arah momen dipol untuk tiap senyawa. Usulkan apakah senyawa ini memiliki momen dipol atau tidak. (b) Karbon dioksida CO2 dan sulfur trioksida SO3 tidak memiliki momen dipol molekul. Usulkan struktur molekul senyawa-senyawa ini berdasarkan pengamatan ini.

Jawab.

(a) Arah momen dipol ikatan ditunjukkan di bawah ini. HCl memiliki dipol molekular, sementara CCl4 tidak memiliki momen dipol sebab momen dipol ikatan akan menghilangkan satu sama lain. (b) Kedua senyawa harus simetris agar dipol ikatan C-O dan S-O yang besar akan saling meniadakan. Jadi CO2 berbentuk linear sementara SO3 adalah segitiga.

c. Bilangan oksidasi atom

Terdapat hubungan yang jelas antara bilangan oksidasi (atau tingkat oksidasi) atom dan posisinya dalam tabel periodik. Bilangan oksidasi atom dalam senyawa kovalen didefinisikan sebagai muatan imajiner atom yang akan dimiliki bila elektron yang digunakan bersama dibagi sama rata antara atom yang berikatan (kalau atom yang berikatan sama) atau diserahkan semua ke atom yang lebih kuat daya tariknya (kalau yang berikatan atom yang berbeda).

(1) UNSUR GOLONGAN UTAMA

Untuk unsur golongan utama, bilangan oksidasi dalam banyak kasus adalah jumlah elektron yang akan dilepas atau diterima untuk mencapai konfigurasi elektron penuh, ns2np6 (kecuali untuk periode pertama) atau konfigurasi elektron nd10 (gambar 5.2).

Hal ini jelas untuk unsur-unsur periode yang rendah yang merupakan anggota golongan 1, 2 dan 13-18. Untuk periode yang lebih besar, kecenderungannya memiliki bilangan oksidasi yang berhubungan dengan konfigurasi elektron dengan elektron ns dipertahankan dan elektron np akan dilepas. Misalnya, timah Sn dan timbal Pb, keduanya golongan 14, memiliki bilangan oksidasi +2 dengan melepas elektron np2 tetapi mempertahankan elektron ns2, selain bilangan oksidasi +4. Alasan yang sama dapat digunakan untuk adanya fakta bahwa fosfor P dan bismut Bi, keduanya golongan 15 dengan konfigurasi elektron ns2np3, memilki bilangan oksidasi +3 dan +5.

Umumnya, pentingnya bilangan oksidasi dengan elektron ns2 dipertahankan akan menjadi semakin penting untuk periode yang lebih besar. Untuk senyawa nitrogen dan fosfor, bilangan oksidasi +5 dominan, sementara untuk bismut yang dominan adalah +3 dan bilangan oksidasi +5 agak jarang.

Unsur logam dan semilogam (silikon Si atau germanium Ge) jarang memiliki nilai bilangan oksidasi negatif, tetapi bagi non logam fenomena ini umum dijumpai. Dalam hidrida nitrogen dan fosfor, NH3 dan PH3, bilangan oksidasi N dan P adalah–3. Semakin tinggi periode unsur, unsur akan kehilangan sifat ini dan bismut Bi tidak memiliki bilangan oksidasi negatif. Di antara unsur golongan 16, bilangan oksidasi-2 dominan seperti dalam kasus oksigen O. Kecenderungan ini lagi-lagi akan menurun untuk unsur-unsur di periode lebih tinggi. Misalkan oksigen hanya memiliki bilangan oksidasi negatif, tetapi S memiliki bilangan oksidasi positif seperti +4 dan +6 yang juga signifikan.

Contoh Soal 5.4 Bilangan oksidasi atom. Tentukan bilangan oksidasi unsur berikut.

  1. Mn dalam MnSO4, Mn2O3, MnO2, MnO4¯, MnO4¯2
  2. As dalam As2O3, AsO¯, AsO4¯3, AsH3 (As)
  3. I dalam I¯, IO¯, IO3¯, I2, ICl3, ICl2¯

Jawab

  1. +2, +3, +4, +7, +6
  2. +3, +3, +5, -3
  3. -1, +1, +5, 0, +3 (keelektronegativan Cl lebih besar dari I)

(2) UNSUR TRANSISI

Walaupun unsur transisi memiliki beberapa bilangan oksidasi, keteraturan dapat dikenali. Bilangan oksidasi tertinggi atom yang memiliki lima elektron yakni jumlah orbital d berkaitan dengan keadaan saat semua elektron d (selain elektron s) dikeluarkan. Jadi, dalam kasus skandium dengan konfigurasi elektron (n-1)d1ns2, bilangan oksidasinya 3. Mangan dengan konfigurasi (n-1)d5ns2, akan berbilangan oksidasi maksimum +7.

Bila jumlah elektron d melebihi 5, situasinya berubah. Untuk besi Fe dengan konfigurasi elektron (n-1)d6ns2, bilangan oksidasi utamanya adalah +2 dan +3. Sangat jarang ditemui bilangan oksidasi +6. Bilangan oksidasi tertinggi sejumlah logam transisi penting seperti kobal Co, Nikel Ni, tembaga Cu dan zink Zn lebih rendah dari bilangan oksidasi atom yang kehilangan semua elektron (n–1)d dan ns-nya. Di antara unsur-unsur yang ada dalam golongan yang sama, semakin tinggi bilangan oksidasi semakin penting untuk unsur-unsur pada periode yang lebih besar.

d. Ukuran atom dan ion

Ketika Meyer memplotkan volume atom yang didefinisikan sebagai volume 1 mol unsur tertentu (mass atomik/kerapatan) terhadap nomor atom dia mendapatkan plot yang berbentuk gigi gergaji. Hal ini jelas merupakan bukti bahwa volume atom menunjukkan keperiodikan. Karena agak sukar menentukan volume atom semua unsur dengan standar yang identik, korelasi ini tetap kualitatif. Namun, kontribusi Meyer dalam menarik perhatian adanya keperiodikan ukuran atom pantas dicatat.

Masih tetap ada beberapa tafsir ganda bila anda ingin menentukan ukuran atom sebab awan elektron tidak memiliki batas yang jelas. Untuk ukuran atom logam, kita dapat menentukan jari-jari atom dengan membagi dua jarak antar atom yang diukur dengan analisis difraksi sinar-X. Harus dinyatakan bahwa nilai ini bergantung pada bentuk kristal (misalnya kisi kubus sederhana atau kubus berpusat muka, dsb.)dan hal ini akan menghasilkan tafsir ganda itu. Masalah yang sama ada juga dalam penentuan jari-jari ionik yang ditentukan dengan analisis difraksi sinar-X kristal ion.

Keperiodikan umum yang terlihat di gambar 5.3 yang menunjukkan kecenderungan jari-jari atom dan ion. Misalnya, jari-jari kation unsur seperiode akan menurun dengan meningkatnya nomor atom. Hal ini logis karena muatan inti yang semakin besar akan menarik elektron lebih kuat. Untuk jari-jari ionik, semakin besar periodenya, semakin besar jari-jari ionnya.

Contoh soal 5.5 Ukuran atom dan ion. Pilihalah spesi yang terkecil dalam tiap kelompok.

(1) Li, Na, K (2) P, Sb, As (3) S, Cl, Ar (4) O+, O, O (1) Li (2) P (3) Cl (4) O+

Jawab

(1) Li (2) P (3) Cl (4) O+


Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

5.3 Keperiodikan sifat senyawa sederhana

a. Keperiodikan sifat oksida

Oksigen dapat membentuk senyawa (oksida) dengan hampir semua unsur, kecuali beberapa gas mulia. Inilah alasan mengapa oksigen awalnya digunakan sebagai standar massa atom. Ketika prosedur untuk menentukan massa atom belum disepakati secara penuh, saat itu lebih nyaman digunakan ”ekuivalen”, yakni kuantitas zat yang tepat bereaksi dengan sejumlah tertentu oksigen. Bahkan hingga kini, membandingkan sifat oksida sama pentingnya dengan membandingkan sifat unsur-unsurnya.

Sebagian besar kalor pembentukan oksida, yakni kalor reaksi saat unsur bereaksi dengan oksigen, besar dan negatif. Hal ini mengindikasikan bahwa paling tidak ada satu oksida stabil. Hanya terdapat beberapa oksida yang memiliki nilai kalor pembentukan positif, yakni oksida halogen atau gas mulia.

Untuk meyakinkan apakah nilai ini menunjukkan keperiodikan, kalor reaksi unsur dengan sejumlah tertentu (8 g) oksigen (bukan kalor reaksi per mol) diperhatikan. Representasi nilai kalor reaksi ini secara skematik yang diberikan di gambar 5.4. Untuk semua periode, nilai absolut kalor pembentukan cenderung menurun ketika nomor atom meningkat.

Akan lebih mudah mengklasifikasikan oksida berdasarkan keasaman dan kebasaannya karena hampir semua oksida bersifat asam atau basa. Klasifikasi ini juga akan membantu pemahaman bab 9 yakni pembahasan asam dan basa dibahas.

Produk reaksi antara oksida dan air biasanya memiliki gugus hidroksi. Sebagaimana akan didiskusikan nanti, banyak oksida bersifat asam bahkan bila oksida-oksida ini tidak memiliki hidrogen. Dalam hal produk reaksi antara oksida asam dan air, hidrogen dari gugus hidroksi cenderung terdisosiasi menjadi proton. Jadi, asam yang mengandung hidrogen asam terikat pada oksigen disebut asam okso. Di pihak lain, produk reaksi antara oksida basa dan air dinamai dengan hidroksida yang mengandung gugus hidroksi yang cenderung terdisosiasi sebagai ion hidroksida OH¯.

Oksida logam alkali atau alkali tanah kurang lebih akan larut dalam air dan menunjukkan sifat basa. Natrium oksida Na2O adalah cntoh khas oksida basa. Jadi,

Na2O(s) + H2O → 2Na+(aq) + 2OH¯(aq) (5.5)

(aq) menunjukkan bahwa spesi ini ada dalam larutan dalam air. Bahkan bila oksida ini sedikit larut dalam air, oksida ini tetap basa bila bereaksi dengan air.

Oksida unsur-unsur golongan 13 reaktif baik pada asam dan basa dan dinamai dengan oksida amfoter. Contoh yang terbaik adalah Al2O3.

Al2O3 + 6HCl → 2AlCl3 + 3H2O (5.6)

Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]2 (5.7)

Sebagian besar oksida non logam bersifat asam. Kekuatan asamnya meningkat dari kiri ke kanan dalam satu periode dalam tabel periodik. Dengan kata lain, keasaman menjadi lebih kuat dengan meningkatnya sifat non logamnya. Sebagaimana unsur golongan 14, karbon memiliki dua oksida, CO dan CO2, dan keasaman CO2 lemah (H2CO3 adalah asam lemah). Oksida karbon berwujud gas tetapi oksida silikon dan unsur-unsur di bawahnya berwujud padat. SiO2 tidak larut dalam air, tetapi oksida ini bersifat asam karena bereaksi dengan basa.

SiO2 + 2NaOH → Na2SiO3 + H2O (5.8)

Sebaliknya, banyak oksida golongan 15 dan 16 larut dalam air. SO3 dan P4O10 adalah oksida asam karena oksida ini bereaksi dengan air menghasilkan proton. Untuk unsur-unsur, ada beberapa oksida yang berkaitan dengan beberapa bilangan oksidasi. Ada dua oksida belerang dengan bilangan oksidasi +4 dan +6. Contoh khasnya adalah oksida nitrogen. Di Tabel 5.8, sederet oksida nitrogen dan hidridanya didaftarkan. Oksida-oksida ini akan didiskusikan lebih lanjut nanti.

Tabel 5.8 Bilangan oksidasi berbagai oksida nitrogen.

Bilangan oksidasi Senyawa Rumus Lewis
-3 Amonia
-2 Hidrazin
-1 Hidroksilamin
0 Nigtrogen
1 Dinitrogen oksida
2 Nitrogen oksida
3 Dinitrogen dioksida
4 Asam nitrat

Bila suatu unsur memiliki lebih dari satu oksida, oksida dengan bilangan oksidasi lebih tinggi memiliki keasaman yang lebih besar daripada yang berbilangan oksidasi lebih rendah. Untuk belerang, SO2 (asam oksonya; H2SO3) adalah asam lemah tetapi SO3 (H2SO4) adalah asam kuat. Keasaman oksida khlorin meningkat dengan urutan sebagai yang ditunjukkan berikut ini.

Cl2O (HClO) < Cl2O3 (HClO2) < Cl2O5 (HClO3) < Cl2O7 (HClO4)

Keasaman Cl2O (HClO) adalah asam sangat lemah sementara Cl2O7 (HClO4) adalah asam kuat.

Tabel 5.9 memberikan oksida dengan bilangan oksidasi tertinggi diantara unsur golongan utama dan kepriodikan keasaman/kebasaan. Catat bahwa oksida amfoter terletak di sudut atas kiri ke sudut kanan bawah tabel periodik.

b. Keperiodikan sifat hidrida

Sebagian besar unsur golongan utama menghasilkan hidrida ketika bereaksi dengan hidrogen, tetapi kestabilan hidridanya bergantung pada letak unsur dalam tabel periodik. Hidrida unsur golongan 1 dan 2 yang elektropositif dan unsur golongan 16 dan 17 yang elektronegatif bersifat stabil, sementara hidrida golongan 13, 14, dan 15 unsur logam berat kadang sukar disintesis.

Tabel 5.9 Keasaman dan kebasaan oksida unsur golongan utama.

Hidrida unsur logam alkali dan logam alkali tanah adalah kristal tak berwarna, dan dengan elektrolisis lelehan hidrida akan dihasilkan hidrogen di anoda. Fakta ini menyarankan bahwa hidrida logam ini, misalnya natrium hidrida, ada sebagai Na+H¯, sebagai kristal mirip garam. Semua hidrida ini adalah basa kuat.

Beberapa unsur golongan 13 dan 14 memiliki lebih dari satu hidrida. Misalnya, hidrida karbon tidak hanya metana CH4, tetapi juga karbena CH2, walaupun sukar mengisolasi CH2 sebab ketakstabilannya yang terlalu besar. Semua hidrida unsur golongan 14 termasuk metana adalah molekul kovalen. Dari kiri ke kanan dalam tabel periodik, karakter kovalen hidrida menurun dan karakter ioniknya meningkat. Ikatan O-H dalam air dan ikatan Cl-H dalam hidrogen khlorida, misalnya, dianggap polar, dan berdisosiasi di air menghasilkan H+. Sebaliknya, keasaman metana bisa diabaikan.

Umumnya hidrida unsur golongan utama adalah molekul, hidrida jenis ini memiliki titik didih dan titik lelh yang khas, dan menunjukkan keperiodikan. Namun, hidrida unsur periode 2 tidak terlalu berperilaku seperti itu. Misalnya, titik didihnya jauh lebih besar daripada hidrida unsur periode ke3 (gambar 5.5).

Karena titik didih hidrida unsur periode ke-3, dan selanjutnya, semakin tinggi dan menunjukkan keperiodikan, jelas sifat hidrida unsur periode ke-2 merupakan kekecualian. Dikenali dengan baik bahwa pembentukan ikatan hidrogen di hidrida unsur periode ke-2 merupakan alasan hal ini. Ikatan hidrogen terjadi dalam senyawa yang memiliki ikatan antara hidrogen dan unsur elektronegatif. Ikatan H-X terpolarisasi menjadi H+-X¯. Interaksi tarikan antara dipol yang terbentuk adalah gaya dorong ikatan hidrogen.

Sifat-sifat fisik seperti titik didih dan titik leleh sedikit banyak menunjukkan keperiodikan. Di antara unsur yang ada dalam golongan yang sama, keperiodikan ini kadang jelas. Misalnya, di antara halogen perubahan unsur dari gas menjadi cair, dan dari cair menjadi padat. Perubahan ini tidak harus seragam. Nitrogen adalah gas, tetapi fosfor dan unsur lain adalah padat. Jelas terlihat ada ketidakkontinyuan di sini.

Latihan

5.1 Konfigurasi elektron atom. Tanpa merujuk ke tabel periodik, tuliskan konfigurasi elektron dan nomor golongan dalam tabel periodik untuk unsur dengan nomor-nomor atom berikut: 3, 8, 14, 17, 32, 37, 56

Jawab :
Cek jawaban anda dengan mencocokkannya dengan tabel periodik.

5.2 Tingkat energi orbital atom. Pilihlah dari setiap pasangan yang memiliki energi lebih tinggi:

(a) 3d, 4s (b) 4p, 5s (c ) 4s, 4p

Jawab:
(a) 3d (b) 5s (c ) 4p

5.3 Afinitas elektron. Dari setiap kelompok tiga spesi kimia, pilihlah yang afinitas elektronnya paling tinggi dan pilihlah yang paling kecil.

(a) Ge, Si, C (b) Cl, Cl¯, Cl+

Jawab: (a) C, Ge (b) Cl+, Cl¯

5.4 Energi ionisasi

Energi ionisasi ke-2 didefinisikan sebagai energi yang diperlukan untuk mengeluarkan elektron kedua dari ion atom tersebut. Energi ionisasi ke-3 dan ke-4 didefinisikan dengan cara yang sama. Pilihlah dari unsur X, Y dan Z yang jelas menunjukkan sifat (a), (b) dan (c) berikut.

(a) membentuk senyawa ionik monovalen dengan khlorin (b) membentuk ikatan kovalen dengan khlorin (c) memiliki bilangan oksidasi +2 dalam sebagian besar kasus. Atom/energi ionisasi pertama ke-2 ke-3 ke-4 X 738 1450 7730 10550 Y 800 2427 3658 25024 Z 495 4563 6912 9540 Jawab X mungkin adalah anggota golongan logam alkali tanah karena baik energi ionisasi ke-1 dan ke2nya rendah. Anda dapat menyimpulkan bahwa Y adalah anggota golongan 13 dan Z adalah unsur golongan 1. (a) Z (b) Y (c) X

5.5 Ukuran atom dan ion. Susun setiap kuartet spesi ini sesuai dengan urutan kenaikan jari-jarinya.

(a) Ar, Cl¯, K+, S2¯ (b) C, Al, F, Si (c) Na, Mg, Ar, P (d) I¯, Ba2+, Cs+, Xe

Jawab :

(a) K+ < Cl¯ < S2¯ < Ar (b) F < C < Si < Al (c) P < Mg < Na < Ar (d) Ba2+ < Cs+ < I¯ < Xe.

Selingan-Pelopor yang tak terkenali

Hanya sedikit kimiawan yang tertarik pada keperiodikan unsur. Kimiawan Inggris John Alexandere Reina Newlands (1837-1898) adalah salah satu di antaranya. Sekitar tahun 1865, ia menyusun unsur menurut kenaikan massa atom 60 unsur yang saat itu telah dikenali, dan ia menyusunnya dalam tabel yang terdiri atas delapan baris dan enam kolom. Ia terkejut, ia mengamati bahwa unsur pertama dan ke-8 dan selanjutnya, ke-8 dan ke-15 memiliki sifat yang mirip. Dengan kata lain, unsur dengan sifat yang mirip akan muncul pada unsur ke-8. Kemunculan kemiripan setiap urutan ke-8 sangat mirip dengan yang ada dalam notasi musik. Ia mengumumkan penemuannya pada pertemuan ilmiah, dan menyebutnya dengan nama hukum oktaf. Ilmuwan Inggris pada waktu itu mengolok-oloknya, menanyakan padanya apa yang akan terjadi bila orang menyusun unsur dalam urutan alfabetis.

John Newlands (1837-1898)

Selama beberapa tahun Newlands diabaikan. Akhirnya di tahun 1887, lebih dari 10 tahun setelah penemuan Mendeleev dikenali, Chemical Society (Inggris) menganugerahinya hadiah.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

32 Tanggapan to “08. SISTEM PERIODIK”

  1. shry Says:

    saya mau bertanya,
    dan saya mengharapkan jawaban anda.

    pertanyaan saya: mengapa unsur periode ketiga cuma memilki 8 unsur ?

    i think, just it from me🙂

  2. nitamarethin Says:

    makasih pak eben atas materi sistem periodiknya🙂

  3. danangmrq Says:

    terimakasih untuk pak eben, materi yang di berikan di dalam blog ini sangat lengkap dan membantu kami para siswa-siswi untuk lebih memahami materi yang bapak ajarkan

  4. abeeminho Says:

    makasih pak atas informasi nya , semoga bermanfaat bagi saya nantinya🙂

  5. junianataslima Says:

    thanks a lot sir for helping me study🙂

  6. Desi Riskyani ( Sepdes ) Says:

    pak,maksud dari soal ini ck mno dan gimana cara
    menjalnkannya ?😀
    ingin memahami lgi pak soalnyo dk terlalu paham nian😀
    ini soal yg ada diatas🙂
    Contoh Soal 5.4 Bilangan oksidasi atom. Tentukan bilangan oksidasi unsur berikut.
    Mn dalam MnSO4, Mn2O3, MnO2, MnO4¯, MnO4¯2
    As dalam As2O3, AsO¯, AsO4¯3, AsH3 (As)
    I dalam I¯, IO¯, IO3¯, I2, ICl3, ICl2¯
    Jawab

    +2, +3, +4, +7, +6
    +3, +3, +5, -3
    -1, +1, +5, 0, +3 (keelektronegativan Cl lebih besar dari I)
    mksh sbelumnya🙂

  7. gisnawirdya Says:

    makasih pak atas info nya, ini dapat membantu sya dalam banyak hal

  8. sheyrenqhosie Says:

    makasih pak udah share🙂

  9. diahrestia Says:

    tabel periodik itu bisa dikatakan kitab sucinya kimia, waw keren pak😀
    Mksi info ny pak

  10. Anna Supriadi Says:

    sedikit banyak bs bernostalgia dengan materi kimia kelas X,,,,
    mengingat kembali sejarah sistem periodik

  11. Ilman Fadhil Marzet Says:

    lebih tau bgaimna tersusunnya sistem periodik..

  12. titan95gazette Says:

    ini berguna sampe kelas 3 kan pak?

  13. selvyanyayu Says:

    terima kasih pak atas informasinya, info ini sangat membantu sekali dalam proses apapun.

  14. devydestiani Says:

    trimakasih Pak atas ilmu yang telah bapak berikan🙂

  15. auliyatryanggraini Says:

    pak,ngapo dak nampil picture ny ?🙂

  16. destypermatasarii Says:

    Ninggalin jejak ^^

  17. bani6up Says:

    thx.. pak artikel nya, numpang copy paste ya pak! buat pengayaan materi & sebagai penambah pengetahuan tentang artikel ini ^^

  18. rodiatuladawiyah Says:

    trims pak🙂

  19. robinkharisma23 Says:

    terima kasih pak saya mengerti tentang sistim periodik semoga berguna sampai kelas 3.

  20. robinkharisma23 Says:

    terima ksh pak saya telah mengerti semoga selalu ingat sampai kls 3.

  21. ayyuchii Says:

    Lengkap pak🙂
    Makasih untuk tulisannya pak ^^

  22. indriyanabilla Says:

    thanks pak

  23. Faris Mustaqim Says:

    Terima kasih pak informasinya

  24. Adam Saputra Says:

    ini sangat membantu , trims pak

  25. ibniantirahayu25 Says:

    makasih pak informasinya sangat bermanfaat🙂

  26. putudarmawan Says:

    Terimakasi atas infonya pak
    semoga ilmu ini dapat saya manfaatkan dgn baik
    dan dapat mmbntu saya ke dpannya

  27. dwirendianisepta Says:

    asslmkm pak, mengapa membandingkan sifat oksida sama pentingnya dengan membandingkan sifat unsur-unsurnya? terimakasih

  28. niaseptianawijaya Says:

    trims pak🙂

  29. octiaraestyahikmah Says:

    terimakasih infonya sngat bermanfaat pak🙂

  30. wahyuni lestari Says:

    wawasan kami makin bertambah berkat info dr bapak, thanks very much pak🙂

  31. dwiangga puspa Says:

    sangat bermanfaat pak🙂

  32. pitfitriariyani Says:

    terima kasih atas materi nya pak🙂

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s


%d blogger menyukai ini: