07. BENTUK MOLEKUL

4. Bentuk Molekul

Sampai di sini, penyusun zat diungkapkan dalam rumus dengan simbol unsur dan ikatan dalam dua dimensi. Konsep atom karbon asimetri di SMA juga mungkin dibahas, walau biasanya jarang mendalam. Umumnya, struktur molekul dianggap datar. Kini kita akan membahas, bahwa struktur zat dapat dianggap obyek tiga dimensi, dan molekul planar adalah kekecualian. Lebih lanjut, faktor-faktor yang menentukan struktur tiga dimensi zat akan dipelajari. Bab ini akan membahas beberapa senyawa anorganik dan organik khas sebagai contoh. Penting untuk mempelajari stereokimia untuk memahami masalah penting dalam kimia modern, khususnya untuk mengetahui hubungan struktur dan fungsi molekul.

4.1 Struktur molekul sederhana

Ikatan ionik diberntuk oleh tarkan elekrostatik antara kation dan anion. Karena medan listrik suatu ion bersimetri bola, ikatan ion tidak memiliki karakter arah. Sebaliknya, ikatan kovalen dibentuk dengan tumpang tindih orbital atom. Karena tumpang tindih sedemikian sehingga orbital atom dapat mencapai tumpang tindih maksimum, ikatan kovalen pasti bersifat terarah. Jadi bentuk molekul ditentukan oleh sudut dua ikatan, yang kemudian ditentukan oleh orbital atom yang terlibat dalam ikatan.

Paparan di atas adalah pembahasan umum struktur molekul. Struktur molekul sederhana dapat disimpulkan dari pertimbangan sterekimia sederhana yang akan dijelaskan di bab ini.

a. Teori tolakan pasangan elektron valensi

Di tahuan 1940, Sidgwick mengusulkan teori yang disebut dengan Teori tolakan pasangan elektron valensi [valence shell electron pair repulsion (VSEPR)], yang karena sifat kualitatifnya sangat mudah dipahami. Teorinya sangat cocok untuk mempredksi struktur senyawa berjenis XYm. Menurut teori ini, jumlah pasangan elektron menentukan penyusunan pasangan-pasangan elektron di sekitar atom pusat molekul. Terdapat gaya tolak elektrostatik antara dua pasangan elektron yang cenderung menolak orbital atom sejauh mungkin satu sama lain. Karena pasangan elektron menempati orbital atom, pasangan elektron bebas juga mempunyai dampak yang sama dengan pasangan elektron ikatan. Dengan kata lain, pasangan elektron bebas dan pasangan elektron ikatan juga tolak menolak sejauh mungkin.

SENYAWA DENGAN ATOM PUSAT DIVALEN

Menurut teori VSEPR, dua pasangan elektron yang dimiliki atom pusat divalen akan terpisah sejauh mungkin bila sudut ikatannya 180°. Dengan kata lain, molekulnya akan memiliki struktur linear. Faktanya, berilium khlorida BeCl2, dengan atom pusat divalen, adalah molekul linear . Seperti akan didiskusikan kemudian, beberapa senyawa seperti karbon dioksida O=C=O dan alena H2C=C=CH2 juga linear seolah memiliki atom pusat divalen.

SENYAWA DENGAN ATOM PUSAT TRIVALEN

Bila teori VSEPR berlaku juga untuk senyawa dengan atom pusat trivalen seperti boron trikhlorida BCl3, sudut ikatan ∠Cl-B-Cl akan bernilai 120° dengan emapt atom itu berada dalam bidang yang sama. Struktur trigonal planar juga diamati di timah khlorida, SnCl3. Catat juga bahwa struktur segitiga juga diamati di etilena H2C=CH2, ion nitrat NO3 dan sulfur dioksida SO2.

SENYAWA DENGAN ATOM PUSAT TETRAVALEN

Teori karbon tetrahedral diusulkan oleh kimiawan Belanda Jacobus Henricus van’t Hoff (18521911) dan kimiawan Perancis Joseph Achille Le Bel (1847-1930), yang menyempurnakan teorinya hampir pada saat yang bersamaan. Kesimpulan yang sama juga dapat secara otomatis didapatkan dari teori VSEPR. Misalnya untuk metana, struktur yang akan memiliki tolakan antar pasangan elektron yang minimal didapatkan untuk geometri tetrahedron dengan sudut 109,5°, yang jelas lebih besar dari bujur sangakar yang bersudut 90°. Menariknya ion amonium NH4+ dengan atom nitrogen sebagai atom pusat juga tetrahedral seperti metana. Bila pasangan elektron bebas juga dihitung, atom nitrogen dari amonia NH3 dan atom oksigen dalam air H2O juga dapat dianggap

tetravalen. Namun di molekul-molekul ini tidak didapat tetrahedral sempurna, sudut ikatan ∠HNH adalah 106° dan ∠H-O-H adalah 104,5°. Fakta ini menyarankan hubungan kualitatif berikut.

Kekuatan relatif tolakan

Pasangan elektron bebas (PEB)-PEB > PEB- Pasangan elektron ikatan (PEI) > PEI-PEI Beberapa ion poliatomik semacam SO42- dan SO32- juga memiliki struktur tetrahedral.

SENYAWA DENGAN VALENSI LEBIH TINGGI DARI EMPAT

Struktur senyawa dengan atom pusat memiliki valensi lebih besar dari empat juga dapat dijelaskan dengan teori VSEPR. Senyawa pentavalen memiliki struktur trigonal bipiramidal. Senyawa khas jenis ini adalah fosfor pentakhlorida PCl5. Senyawa dengan atom pusat heksavalen berstruktur oktahedral, yang identik dengan bujur sangkar bipiramid. Contoh yang baik adalah belerang heksafluorida SF6. Dalam kasus senyawa heptavalen, situasinya sama dan strukturnya adalah pentagonal bipiramid.

Ketika menggunakan teori ini, dalam senyawa yang strukturnya ditentukan pasangan elektron bebas harus diikutsertakan sebagai bagian pasangan elekron yang menentukan struktur. Misalnya untuk IF5 dan ICl4 hal ini sangat penting. Di Gambar 4.1 ditunjukkan beberapa struktur senyawa khas.

(c) segitiga bipiramid PCl5; (d) oktahedron SF6.

Latihan: Prediksi struktur berdasarkan teori VSEPR Prediksikan struktur spesi kimia berikut dengan teori VSEPR: (a) SO2, (b) SO3 (c ) SO42-

Jawab: (a) segitiga, (b) piramidal , (c ) tetrahedral

b. Hibridisasi orbital atom

Diharapkan bahwa berilium khlorida BeCl2 dan timah (II) khlorida SnCl2 akan memiliki struktur yang mirip karena memiliki rumus molekul yang mirip. Namun, ternyata senyawa pertama berstruktur linear sedang yang kedua bengkok. Hal ini dapat dijelaskan dengan perbedaan orbital atom yang digunakan. Bila elektron-elektron mengisi orbital atom mengikuti prinsip Aufbau, elektron akan mengisi orbital atom yang berenergi terendah. Dua elektron diizinkan mengisi satu orbital. Menurut prinsip Pauli, tidak ada elektron yang memiliki satu set bilangan kuantum yang tepat sama (Bab 2.4 (d)). Masalah yang timbul adalah akan diletakkan di mana elektron ke-empat atom karbon. Telah ditetapkan bahwa konfigurasi elektron terendah atom adalah konfigurasi dengan jumlah elektron tak berpasangan maksimum dan masih tetap diizinkan oleh aturan Pauli dalam set orbital dengan energi yang sama (dalam kasus karbon adalah tiga orbital 2p). Dalam kasus ini awalnya semua elektron akan memiliki bilangan kuantum spin yang sama (yakni, +1/2 atau -1/2) (Gambar 4.2).

Berilium adalah atom dengan dua elektron valensi dan konfigurasi elektron (1s22s2). Agar berilium membentuk ikatan sebagai atom divalen, orbital 2s dan 2p harus membentuk pasangan orbital terhibridisasi sp. Karena kedua orbital hibrida sp membentuk sudut ikatan 180°, BeCl2 dengan demikian linear.

Mirip dengan itu, boron yang memiliki tiga elektron valensi dan konfigurasi elektron 1s22s22p1; atau secara sederhana ditulis 1s22s22p. Untuk membentuk ikatan dengan valensi tiga, konfigurasi elektronnya harus (1s22s2px2py). Satu orbital 2s dan dua orbital 2p akan membentuk orbital terhibridisasi sp2. Karena sudut ikatan antara dua orbital hibrida sp2 adalah 120°, BCl3 berstruktur segitiga.

Dalam kasus senyawa karbon, strukturnya dijelaskan dengan mengasumsikan empat orbital sp3 ekuivalen terbentuk dari satu orbital 2s dan tiga orbital 2p. Atom karbon memiliki empat elektron valensi, dan konfigurasi elektronnya adalah 1s22s22p2, dan untuk membentuk atom tetravalen, konfigurasi elektronnya harus berubah menjadi (1s22s2px2py2pz). Dengan hibridisasi, empat orbital hibrida sp3 yang ekuivalen akan terbentuk. Sudut ikatan yang dibuat oleh dua orbital hibrida sp3 adalah 109,5° (sudut tetrahedral). Inilah alasan mengapa metana berstruktur tetrahedral.

Untuk kasus senyawa nitrogen, amonia NH3 misalnya, empat dari lima elektron valensi atom nitrogen akan menempati empat orbital hibrida sp3 seperti ditunjukkan di Gambar 4.3. Satu elektron valensi yang tersisa akan menempati satu orbital hibrida yang telah diisi satu elektron. Jadi spin elektron kedua ini harus berlawanan dengan spin elekron pertama. Akibatnya atom nitrogen akan trivalen dengan satu pasangan elektron bebas.

Dalam kasus fosfor, ada dua kasus. Dalam satu kasus atom fosfornya trivalen dengan satu pasang elektron bebas seperti nitrogen, dan di satu kasus lain fosfornya pentavalen dengan orbital hibrida dsp3. Fosfor pentavalen memiliki struktur trigonal bipiramidal. Ion kompleks dengan ion nikel atau kobal sebagai atom pusat berkoordinasi enam dengan struktur oktahedral.

Sebagaimana didiskusikan di atas, baik teori VSEPR maupun hibridisasi orbital atom akan memberikan kesimpulan struktur molekul dan ion yang sama. Walaupun teori VSEPR hanya bergantung pada tolakan antar pasangan elektron, dan teori hibridisasi memberikan justifikasi teoritisnya.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

4.2 Struktur senyawa karbon

a. Keisomeran karena atom karbon asimetrik, keisomeran optik

Sebelum ada teori valensi, kimiawan/fisiologis Perancis Louis Pasteur (1822-1895) telah mengenali pengaruh struktur molekul individual pada sifat gabungan molekul. Ia berhasil memisahkan asam rasemat tartarat (sebenarnya garam natrium amonium) menjadi (+) dan (-) berdasarkan arah muka hemihedral kristalnya (1848).

Kedua senyawa memiliki sifat fisika (misalnya titik leleh) dan kimia yang sama, tetapi ada perbedaan dalam sifat optik dalam larutan masing-masing senyawa. Keduanya memutar bidang polarisasi cahaya, dengan kata lain mempunyai keaktifan optik. Rotasi jenis kedua senyawa, yang mengkur kekuatan rotasi kedua senyawa, memiliki nilai absolut yang sama, namun tandanya berlawanan. Karena molekul berada bebas dalam larutan, perbedaan ini tidak dapat dijelaskan karena perbedaan struktur kristal. Sayangnya waktu itu, walaupun teori atom sudah ada, teori valensi belum ada. Dengan kondisi seperti ini Pasteur tidak dapat menjelaskan penemuannya.

Di tahun 1860-an, kimiawan Jerman Johannes Adolf Wislicenus (1835-1902) menemukan bahwa dua jenis asam laktat yang diketahui waktu itu keduanya adalah asam α-hidroksipropanoat CH3CH(OH)COOH, bukan asam β- hidroksipropanoat HOCH2CH2COOH. Ia lebih lanjut menyarankan bahwa konsep baru untuk stereoisomer harus dibuat untuk menjelaskna fenomena ini. Konse baru ini menyatakan bahwa kedua senyawa yang memiliki rumus struktur yang sama dalam dua dimensu dapat menjadi stereoisomer bila susunan atom-atomnya di ruang berbeda.

Di tahun 1874, van’t Hoff dan Le Bel secara independen mengusulkan teori atom karbon tetrahedral. Menurut teori ini, kedua asam laktat yang dapat digambarkan di Gambar 4.4. Salah satu asam laktat adalah bayangan cermin asam laktat satunya. Dengan kata lain, hubungan kedua senyawa seperti hubungan tangan kanan dan tangan kiri, dan oleh karena itu disebut dengan antipoda atau enantiomer. Berkat teori van’t Hoff dan Le Bel, bidang kimia baru, stereokimia, berkembang dengan cepat.

(+)-asam laktat (-)-lactic acid

Gambar 4.4 Stereoisomer asam laktat.
Kedua isomer atau antipoda, berhubungan layaknya tangan kanan dan kiri

Pada atom karbon pusat di asam laktat, empat atom atau gigus yang berbeda terikat. Atom karbon semacam ini disebut dengan atom karbon asimetrik. Umumnya, jumlah stereoisomer akan sebanyak 2n, n adalah jumlah atom karbon asimetrik. Asam tartarat memiliki dua atom karbon asimetrik. Namun, karena keberadaan simetri molekul, jumlah stereoisomernya kurang dari 2n, dan lagi salah satu stereoisomer secara optik tidak aktif (Gambar 4.5). Semua fenomena ini dapat secara konsisten dijelaskan dengan teori atom karbon tetrahedral.

(+)-asam tartarat (-)-asam tartarat meso-asam tartarat

Gambar 4.5 Stereoisomer asam tartarat(+)-asam tartarat dan (-)-asam tartarat membentuk pasangan enantiomer.

Namun karena adanya simetri, meso-asam tartarat secara optik tidak aktif.

Latihan 4.2 Gliseraldehida Gambarkan perspektif gliseraldehida OHCCHOHCH2OH, gula paling sederhana, seperti cara yang ditunjukkan pada gambar 4.4.

Jawab.

Catat ada banyak cara lain untuk menggambarkannya.

b. Isomer geometri

Van’t Hoff menjelaskan keisomeran asam fumarat dan maleat karena batasan rotasi di ikatan ganda, suatu penjelasan yang berbeda dengan untuk keisomeran optik. Isomer jenis ini disebut dengan isomer geometri. Dalam bentuk trans subtituennya (dalam kasus asam fumarat dan maleat, gugus karboksil) terletak di sisi yang berbeda dari ikatan rangkap, sementara dalam isomer cis-nya subtituennya terletak di sisi yang sama.

Dari dua isomer yang diisoasi, van’t Hoff menamai isomer yang mudah melepaskan air menjadi anhidrida maleat isomer cis sebab dalam isomer cis kedua gugus karboksi dekat satu sama lain. Dengan pemanasan sampai 300 °C, asam fuarat berubah menjadi anhidrida maleat. Hal ini cukup logis karena prosesnya harus melibatkan isomerisasi cis-trans yang merupakan proses dengan galangan energi yang cukup tinggi (Gambar 4.6).

Karena beberapa pasangan isomer geometri telah diketahui, teori isomer geometri memberikan dukunagn yang baik bagi teori struktural van’t Hoff.

asam fumarat asam maleat anhidrida maleat

Gambar 4.6 Isomer geometri asam maleat (bentuk cis) mempunyai dua gugus karboksil yang dekat, dan mudah melepas air menjadi anhidrida (anhidrida maleat).

Latihan 4.3 Isomer dikhloroetilena

Gambarkan rumus struktur semua isomer dikhloroetilena C2H2Cl2.

Jawab: Dua atom khlorin dapat terikat pada atom karbon yang sama, atau pada atom karbon yang

berbeda. Dan pada kasus yang kedua akan ada isomer geometri.

Struktur benzen

Struktur benzen menjadi enigma beberapa tahun. Di tahun 1865, Kekulé mengusulkan struktur siklik planar dengan tiga ikatan tunggal dan tiga ikatan ganda yang terhubungkan secara bergantian. Strukturnya disebut dengan struktur Kekulé. Bukti struktur semacam ini datang dari jumlah isomer benzen tersubstitusi. Dengan struktur Kekulé, akan ada tiga isomer kresol, yakni, o, m- dan p-kresol (Gambar 4.7).

Struktur Kekulé tidak dapat menyelesaikan semua masalah yang berkaitan dengan struktur benzene. Bila benzene memiliki struktur seperti yang diusulkan Kekulé, akan ada dua isomer okresol, yang tidak diamati. Kekulé mempostulatkan bahwa ada kesetimbangan cepat, yang disebut dengan resonansi antara kedua struktur. Istilah resonansi kemudian digunakan dalam mekanika kuantum.

d. Struktur etana: analisis konformasional

Teori atom karbon tetrahedral dan struktur benzene memberikan fondasi teori struktur senyawa organik. Namun, van’t Hoff dan kimiawan lain mengenali bahwa masih ada masalah yang tersisa dan tidak dapat dijelaskan dengan teori karbon tetrahedral. Masalah itu adalah keisomeran yang disebabkan oleh adanya rotasi di sekitar ikatan tunggal.

Bila rotasi di sekitar ikatan C-C dalam 1,2-dikhloroetana CH2ClCH2Cl terbatas sebagaimana dalam kasus asam fumarat dan maleat, maka akan didapati banyak sekali isomer. Walaupun van’t Hoff awalnya menganggap adanya kemungkinan seperti itu, ia akhirnya menyimpulkan bahwa rotasinya bebas (rotasi bebas) karena tidak didapati isomer rotasional akibat batasan rotasi tersebut. Ia menambahkan bahwa struktur yang diamati adalah rata-rata dari semua struktur yang mungkin.

Di tahun 1930-an dibuktikan dengan teori dan percobaan bahwa rotasi di sekitar ikatan tunggal tidak sepenuhnya bebas. Dalam kasus etana, tolakan antara atom hidrogen yang terikat di atom karbon dekatnya akan membentuk halangan bagi rotasi bebas, dan besarnya tolakan akan bervariasi ketika rotasi tersebut berlangsung. Gambar 4.8(a) adalah proyeksi Newman etana, dan Gambar 4.8(b) adalah plot energi-sudut torsi.

Gambar 4.8 Analisis konformasional.

Dalam gambar (a) (proyeksi Newman), Anda dapat melihat molekul di arah ikatan C-C. Atom karbon depan dinyatakan dengan titik potong tiga garis pendek (masing-masing mewakili ikatan CH) sementara lingkaran mewakili arom karbon yang belakang. Keseluruhan gambar akan berkaitan dengan proyeksi molekul di dinding di belakangnya. Demi kesederhanaan atom hidrogennya tidak digambarkan (b) Bila sudut orsinya 0°, 120°, 240° dan 360°, bagian belakang molekul “berimpitan” eclipsed dengan bagian depan. Bila anda menggambarkan proyeksi Newman dengan tepat berimpit, anda sama sekali tidak dapat melihat bagian belakang. Secara konvensi, bagian belakang diputar sedikit agar dapat dilihat.

Bila sudut rotasi (sudut torsi) 0°, 60°, 120° dan 180°, energi molekul kalau tidak maksimum akan minimum. Struktur (konformasi) dengan sudut torsi 0° atau 120° disebut dengan bentuk eklips, dan konformasi dengan sudut torsi 60°atau 180° disebut bentuk staggered. Studi perubahan >struktur molekular yang diakibatkan oleh rotasi di sekitar ikatan tunggal disebut dengan analisis konformasional. Analisis ini telah berkembang sejak tahun 1950-an hingga kini.

Analisis konformasional butana CH3CH2CH2CH3 atas rotasi di sekitar ikatan C-C pusat, mengungkapkan bahwa ada dua bentuk staggered. Bentuk trans, dengan dua gugus metil terminal di sisi yang berlawanan, berenergi 0,7 kkal mol–1 lebih rendah (lebih stabil) daripada isomer gauche yang dua gugus metilnya berdekatan.

Hasil ini dapat diperluas ke senyawa-senyawa semacam pentana dan heksana yang memiliki lingkungan metilena tambahan, dan akhirnya pada poloetilena yang dibentuk oleh sejumlah besar metilen yang terikat. Dalam semua analisis ini, struktur trans, yakni struktur zig zag, adalah yang paling stabil. Namun, ini hanya benar dalam larutan. Untuk wujud padatnya faktor lain harus ikut diperhatikan.

Latihan 4.4 Analisis konformasional 1,2-dikhloroetana

Lakukan analisis konformasional 1,2-dikhloroetan dengan memutar di sekitar ikatan C-C dan menggambarkan proyeksi Newman sebagaimana diperlihatkan di Gambar 4.8(a).

Jawab:

Sebagai rangkuman, struktur senyawa karbon terutama ditentukan oleh keadaan hibridisasi atom karbon yang terlibat. Bila banyak konformasi dimungkinkan oleh adanya rotasi di sekitar ikatan tunggal, konformasi yang paling stabil akan dipilih.

Bila molekulnya memiliki sisi polar, faktor lain mungkin akan terlibat. Interaksi tarik menarik antara sisi positif dan negatif akan mengakibatkan struktur dengan halangan sterik terbesar lebih stabil. Dalam kasus asam salisilat, ikatan hidrogen antara gugus hidroksi dan karboksi akan membuat struktur yang lebih rapat lebih stabil.

Sebagai kesimpulan, struktur senyawa karbon dapat dijelaskan dengan cukup baik bila berbagai faktor dipertimbangkan.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

4.3 Struktur senyawa anorganik

Struktur banyak senyawa anorganik dapat dijelaskan dengan menggunakan teori VSEPR atau secara sederhana dengan teori valensi. Namun, beberapa senyawa anorganik yang tidak masuk dalam kelompok ini sangat penting baik dari sudut pandang teori maupun praktis. Beberapa senyawa ini akan didiskusikan di bawah ini.

AMONIA

Amonia NH3 seolah diturunkan dari metana dengan menggantikan atom karbon dengan atom nitrogen dan salah satu atom hidrogen dengan pasangan elektron bebas. Jadi, amonia memiliki seolah struktur tetrahedral. Namun untuk memahami struktur amonia, anda harus mempertimbangkan inversi atom nitrogen. Perilaku amonia sangat mirip dengan payung yang tertiup sehingga terbalik. Halangan inversinya hanya 5,8 kkal mol-1, dan inversi amonia pada suhu kamar sangat cepat (Gambar 4.10).

Secara prinsip, atom nitrogen dari amina yang mengikat tiga atom atau gugus yang berbeda dapat merupakan pusat asimetrik sebab nitrogen memiliki empat substituen termasuk pasangan elektron bebas. Namun karena adanya inversi ini, atom nitrogen tidak dapat menjadi pusat asimetrik..

DIBORAN

Diharapkan reaksi antara magnesium borida dan air akan menghasilkan boron trihidrida BH3. Namun, yang didapatkan adalah diboran B2H6. Nampaknya senyawa ini tidak dapat dijelaskan dengan teori valensi sederhana, dan banyak sekalai usaha telah dilakukan untuk mengelusidasi anomali ini.

Mg3B2 + 6H2O → 3Mg(OH)2 + B2H6 (4.1)

Kini telah dibuktikan bahwa senyawa ini memiliki struktur aneh sebagai beikut.

Kerangka molekulnya adalah jajaran genjang yang terbentuk dari dua atom boron dan dua atom hidrogen, dan atom hidrogen terikat pada dua atom boron disebut dengan hidrogen jembatan. Empat ikatan B-H terminal secara esensi terbentuk dari tumpang tindih orbital 1s hidrogen dan orbital hibrida boron. Sebaliknya, ikatan jembatan B—H—B adalah ikatan tiga pusat, dua elektron yang terbetuk dari hibridisasi hidrogen 1s dan dua orbital hibrida boron. Keberadaan ikatan seperti ini dikonfirmasi dengan mekanika kuantum.

SENYAWA GAS MULIA

Lama sekali dipercaya bahwa gas mulia hanya ada sebagai molekul monoatomik, dan tidak membentuk senyawa. Kimiawan Kanada Neil Bartlett (1932-) menemukan spesi ionik [O2]+[PtF6]dengan mereaksikan oksigen dengan platina heksafluorida PtF6. Ia beranggapan reaksi yang mirip dengan ini yakni reaksi antara xenon dan PtF6 akan berlangsung karena energi ionisasi pertama xenon dekat nilainya dengan energi ionisasi perrtama molekul oksigen. Di tahun 1962 ia berhasil mendapatkan senyawa gas mulia pertama Xe(PtF6)x, (x = 1, 2).

Kemudian menjadi jelas bahwa gas mulia membentuk senyawa biner dengan oksigen dan fluorin yang keduanya memiliki keelektronegativan tinggi. XeF2 adalah molekul linear dengan kelebihan elektron, sementara XeF4 merupakan satu-satunya senyawa unsur berbentuk bujur sangkar. XeF6 berbentuk oktahedron terdistorsi, dan di dekat titik lelehnya, senyawa ini ada sebagai kristal [XeF5]+F.

FEROSEN

Ferosen adalah senyawa terdiri atas dua cincin sikopentadienil yang melapisi kedua sisi atom Fe dan senyawa ini merupakan contoh pertama kelompok senyawa yang disebut dengan senyawa sandwich (Gambar 4.12).

D awal tahun 1950-an , rekasi antara siklopentadienilmagnesium bromida dan FeCl3 anhidrat dilakukan dengan harapan akan dihasilkan turuanan fulvalena. Namun, senyawa dengan struktur (C6H5)2Fe yang diperoleh. Struktur senyawa ini didapatkan sangat unik: delapan belas elektron, dua belas dari dua molekul siklopentadienil (masing-masing enam elektron) dan enam dari kulit terluar Fe. Jadi, konfigurasi elektron gas mulia dicapai dan kestabilannya kira-kira sepadan. Kedua cincin siklopentadienail berputar layaknya piringan CD musik.

Latihan

4.1 Struktur senyawa inorganik; teori VSEPR.

Sarankan struktur senyawa anorganik berikut: (a) SeF6 (b) N2O (c) ClO (d) CF3Cl (C atom pusat)

Jawab (a) oktahedron (b) linear (c) linear (d) tetrahedron

4.2 Isomer benzen tersubstitusi

Rumus molekul senyawa yang mengandung satu cincin benzen adalah C8H10. Gambarkan struktur isomer-isomer yang mungkin untuk senyawa ini.

Jawab: senyawa C8H10 mengandung satu cincin benzen dapat berupa etilbenzen C6H5C2H5 atau xylen C6H4(CH3)2. Xylena akan memiliki tiga isomer posisi, yakni, o-, m- dan p-xylene.

4.3 Isomer geometri

Baik asam fumarat dan maleat memiliki rumus HOOCCH=CHCOOH dan merupakan pasangan isomer geometri. Dengan pemanasan ke 150°C, asam maleat kehilangan satu mol H2O menghasilkan anhidrat maleat sementara asam fumarat tidak akan berubah menjadi anhidrat maleat sampai pemanasan pada 300°C. Dengan menggunakan data ini, jelaskan struktur kedua senyawa.

Jawab: lihat teks di halaman

4.4 Struktur senyawa kompleks platina

Diamindikhloroplatina [PtCl2(NH3)2] memiliki struktur bujur sangkar. Prediksikan struktur isomer-isomernya yang mungkin.

Dua isomer, bentuk cis- dan trans, mungkin ada. Struktur bujur sangkar planar disebabkan oleh hibridisasi dsp2. Isomer cis merupakan obat antikanker yang terkenal.

4.5. Stereoisomer gula

Senyawa yang memiliki empat atom karbon, HOCH2CHOHCHOHCHO, adalah gula yang kesederhanaanya sebanding dengan gliseraldehida.

(a) Ada berapa atom karbon asimetrik dalam molekul ini?
(b) Gambarkan rumus struktur semua stereoisomer gula ini seperti yang ditunjukan dalam gambar 4.5.

Jawab (a) Ada dua. Dalam struktur di bawah ini, atom karbon asimterik ditandai dengan *. (b) Dua pasang enantiomer dengan jelas ditandai.

4.6 Stereoisomer gula

Glukosa, HOCH2(CHOH)4CHO, memiliki enam atom karbon dan merupakan salah satu senawa alam yang berlimpah.

(a) Ada berapa atom karbon asimetrik dalam molekul ini? (b) Gambarkan rumus struktur semua stereoisomer gula ini seperti yang ditunjukan dalam gambar 4.5.

Jawab: (a) Empat. Di struktur di bawah in, atom karbon asimetrik ditandai dengan *. (b) Jumlah stereoisomer adalah 24 = 16. Struktur delapan isomer ditunjukkan di bawah ini.

Bagi masing-masing isomer di atas, anda dapat menggambarkan pasangan enantiomernya sebagai berikut:

4.7 Analisis konformasional konformer

Dalam kasus 1,2-dikhloroetana, bentuk trans lebih stabil daripada bentuk gauche. Di pihak lain, dalam kasus etilen glikol (1,2-etanadiol; digunakan secara luas sebagai cairan antibeku) bentuk gauche lebih stabil daripada bentuk trans walaupun struktur molekulnya sangat mirip dengan 1,2dikhloroetana. Jelaskan.

Jawab: Dalam bentuk gauche etilen glikol ikatan hidrogen intramolekul akan terjadi dan menstabilkan struktur. Ikatan semacam ini tidak ada dalam bentuk trans.

Bentuk gauche Bentuk trans

4.8 ikatan dalam diboran Jelaskan ikatan dalam diboran. Jawab: lihat teks halaman.

Selingan — Senyawa dengan struktur yang menarik

Terdapat sejumlah senyawa organik dengan struktur menarik dan unik. Contoh yang baik adalah kuban C8H8 dengan struktur yang hampir kubus. Walaupun banyak teknik telah dicoba, molekul tetrahedral, tetrahedran C8H8, belum pernah disintesis. Sudut ikatan ∠C-C-C terlalu berbeda dari sudut tetrahedral normal, dan mungkin inilah alasan mengapa sintesisnya belum dapat dilakukan.

kuban tetrahedran
demi kesederhanaan label atom dan ikatan C-H tidak digambarkan

Deret lain senyawa dengan struktur menarik dan aneh adalah katenan, cincin molekul yang penuh teka-teki. Bagaimana dua cincin saling mengait walaupun tidak ada ikatan antar keduanya. Bagaimana kimiawan dapat mensintesis senyawa semacam ini? Sungguhh ini merupakan prestasi pakung gemilang yang dicapai kimia organik sintetik.

Gambar skematik katenan

Sejak penemuannya di akhir abad 20, fuleren C60 telah menarik perhatian baik kimiawan teoritis maupun praktis. Bolanya dibentuk oleh kombinasi heksagon dan pentagon, dan sungguh sangat mirip dengan bola sepak. Menarik untuk dicatat bahwa keberadaan fulerene telah diprediksikan jauh sebelumnya oleh kimiawan Jepang Eiji Osawa.

padangan stereo fulleren

Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

51 Tanggapan to “07. BENTUK MOLEKUL”

  1. rumus molekul dari meta xylene apa?tlng dibantu ya? Says:

    rm22n@ymail.com

  2. Lily Says:

    bpakkkk . ini sgat membantu . hehehehe

    like thiss

  3. anggi permana putra Says:

    XeF2=linear
    apa maksudnya itu.?

  4. octiaraestyahikmah Says:

    terimakasih pak atas info nya, sngat berguna . 🙂

  5. dinaseptarizky Says:

    makasih banyak infonyo pak 🙂

  6. triwahyunibintang Says:

    makasi pak informasinya..
    ini sangat membantu saya 🙂

  7. afifkenamon Says:

    banyak dpet ilmu sekarang 🙂

  8. junianataslima Says:

    thanks a lot sir for helping me study 🙂

  9. gisnawirdya Says:

    makasih pak atas info nya, ini dapat membantu sya dalam banyak hal

  10. sheyrenqhosie Says:

    yang hibridasi tawu , yang lain belum pak 🙂
    hehhe

  11. diahrestia Says:

    terima kasih info nya pak

  12. Anna Supriadi Says:

    materi, contoh soal dan pembahasan bsa membantu pemahaman materi. sekaligus bs menjadi tantangan…..

  13. rizkyamaliautami Says:

    makasih pak telah berbagi informsi:)

  14. Ilman Fadhil Marzet Says:

    dengan gambar sepertinya lebih mudah di pahami,,,,,
    But ni sngat mmbantu sekali.

  15. ryuofyogie Says:

    suka pak postingan materinya sangat membantu 🙂

  16. selvyanyayu Says:

    terima kasih pak atas informasinya, info ini sangat membantu sekali dalam proses apapun.

  17. devydestiani Says:

    trimakasih Pak atas ilmu yang telah bapak berikan 🙂

  18. citralestio Says:

    beruntung SMA N 4 mendpt guru kimia sprt bapak,krn bapak sngat membantu murid2 bapak..

  19. Nur Iffah Syayuti Says:

    denganmembaca materi ini, saya jadi lebih mengerti ttg bentuk molekul

  20. Desi Riskyani ( Sepdes ) Says:

    bapak, terima kasih tentang wawasnnya. 🙂
    sngat bermanfaat sekali bgi saya 🙂

  21. citralestio Says:

    pak ada tidak kegunaan hukum hess utk kehdpan sehari-hari..? 🙂

  22. destypermatasarii Says:

    Numpang masang comment pak ^^

  23. nellyafrianti Says:

    saya suka dengan materi bentuk molekul.
    akan tetapi kalau dilihat dari tulisan bapak kayaknya pembahasannya terlalu tinggi 😀

  24. bani6up Says:

    thx.. pak artikel nya, numpang copy paste ya pak! buat pengayaan materi.. ^^

  25. henihen'site Says:

    menambah wawasan pak. banyak yang tidak ada dibuku..

  26. rodiatuladawiyah Says:

    suka 🙂

  27. terataiayutheta Says:

    Waah makin jelas pak 🙂

  28. LOL-ing Creature Says:

    Pak, gambarnya kok sama sekali dak muncul? Kirain tadinya koneksi aku yang rusak, pak. Ternyata memang mungkin removed dari sitenyo yo pak. Trims tapi, entry-nyo oke pak.

  29. indriyanabilla Says:

    sepertinya agak sulit ya pak

  30. nitamarethin Says:

    sepertinya sedikit beda ya pak dengan cara teori VSEPR ?

  31. Faris Mustaqim Says:

    Terima kasih pak informasinya

  32. Adam Saputra Says:

    ini sangat membantu , trims pak

  33. ibniantirahayu25 Says:

    pak,. masih agak pusing tapi sudah mendingan 🙂

  34. niaseptianawijaya Says:

    pak, dalam sub bab ini, banyak yang belum dipelajari ya pak ?

  35. putudarmawan Says:

    Terimakasi atas infonya pak
    semoga ilmu ini dapat saya manfaatkan dgn baik
    dan dapat mmbntu saya ke dpannya

  36. auliyatryanggraini Says:

    pak,picture ny gak tampil ? 🙂

  37. danangmrq Says:

    terimakasih pak, materinya sangat membantu saya dalam belajar

  38. widyahesti28 Says:

    pak adakah 2 ikatan atom yang berbeda tetapi memiliki bentuk molekul yang sama ?

  39. yukeagustin Says:

    Pak mengapa gas mulia hanya ada sebagai molekul monoatomik, dan tidak membentuk senyawa ?.

  40. ebenbohrohr Says:

    sm2…gd.lck

  41. auliyatryanggraini Says:

    pak bgus sekali wawasan ygbapak berikan kepada saya. 🙂

  42. akasumiyar Says:

    bgs

  43. dwirendianisepta Says:

    asslmkm pak, apa maksud dari dua cincin sikopentadienil? contohnya itu spt apa ya pak? makasih pak

  44. ajieandreas Says:

    pak,,
    infrmsi sprti ini dpt mmbntu sya utk mmpljri lebih detail tntang bentuk moleku…
    ehhehehhhhee… 🙂

  45. cevhy15satelit Says:

    Terima kasih pak atas info nya,,,

  46. ryans04permatasari Says:

    semoga info ini dapat bermanfaat untuk saya , agar saya bisa lebih mengarti lagi

  47. Desi Riskyani ( Sepdes ) Says:

    pak,ini sangat membatu saya belajar 😀

  48. wahyuaditya37 Says:

    artikel yang bagus pak .. 🙂

  49. wahyuni lestari Says:

    pengetahuan kami makin bertambah pak.

  50. pitfitriariyani Says:

    infonya sangat bermanfaat pak.

  51. yenimeita Says:

    keisomeran optik it apa ya pak? :DD

Tinggalkan Balasan ke rumus molekul dari meta xylene apa?tlng dibantu ya? Batalkan balasan