39. ASAM BASA

Teori Asam dan Basa

Halaman ini menggambarkan teori asam dan basa Arrhenius, Bronsted-Lowry, dan Lewis, dan halaman ini juga menjelaskan hubungan antara ketiga teori asam dan basa tersebut. Halaman ini juga menjelaskan konsep pasangan konjugasi – asam dan basa konjugasinya, atau basa dan asam konjugasinya.

Teori asam dan basa Arrhenius

Teori

  • Asam adalah zat yang menghasilkan ion hidrogen dalam larutan.
  • Basa adalah zat yang menghasilkan ion hidroksida dalam larutan.

Penetralan terjadi karena ion hidrogen dan ion hidroksida bereaksi untuk menghasilkan air.

Pembatasan teori

Asam hidroklorida (asam klorida) dinetralkan oleh kedua larutan natrium hidroksida dan larutan amonia. Pada kedua kasus tersebut, kamu akan memperoleh larutan tak berwarna yang dapat kamu kristalisasi untuk mendapatkan garam berwarna putih – baik itu natrium klorida maupun amonium klorida.

Keduanya jelas merupakan reaksi yang sangat mirip. Persamaan lengkapnya adalah:

Pada kasus natrium hidroksida, ion hidrogen dari asam bereaksi dengan ion hidroksida dari natrium hidroksida – sejalan dengan teori Arrhenius.

Akan tetapi, pada kasus amonia, tidak muncul ion hidroksida sedikit pun!

anda bisa memahami hal ini dengan mengatakan bahwa amonia bereaksi dengan air yang melarutkan amonia tersebut untuk menghasilkan ion amonium dan ion hidroksida:

Reaksi ini merupakan reaksi reversibel, dan pada larutan amonia encer yang khas, sekitar 99% sisa amonia ada dalam bentuk molekul amonia. Meskipun demikian, pada reaksi tersebut terdapat ion hidroksida, dan kita dapat menyelipkan ion hidroksida ini ke dalam teori Arrhenius.

Akan tetapi, reaksi yang sama juga terjadi antara gas amonia dan gas hidrogen klorida.

Pada kasus ini, tidak terdapat ion hidrogen atau ion hidroksida dalam larutan – karena bukan merupakan suatu larutan. Teori Arrhenius tidak menghitung reaksi ini sebagai reaksi asam-basa, meskipun pada faktanya reaksi tersebut menghasilkan produk yang sama seperti ketika dua zat tersebut berada dalam larutan. Ini adalah sesuatu hal yang lucu!

Teori asam dan basa Bronsted-Lowry

Teori

  • Asam adalah donor proton (ion hidrogen).
  • Basa adalah akseptor proton (ion hidrogen).

Hubungan antara teori Bronsted-Lowry dan teori Arrhenius

Teori Bronsted-Lowry tidak berlawanan dengan teori Arrhenius – Teori Bronsted-Lowry merupakan perluasan teori Arrhenius.

Ion hidroksida tetap berlaku sebagai basa karena ion hidroksida menerima ion hidrogen dari asam dan membentuk air.

Asam menghasilkan ion hidrogen dalam larutan karena asam bereaksi dengan molekul air melalui pemberian sebuah proton pada molekul air.

Ketika gas hidrogen klorida dilarutkan dalam air untuk menghasilkan asam hidroklorida, molekul hidrogen klorida memberikan sebuah proton (sebuah ion hidrogen) ke molekul air. Ikatan koordinasi (kovalen dativ) terbentuk antara satu pasangan mandiri pada oksigen dan hidrogen dari HCl. Menghasilkan ion hidroksonium, H3O+.

Ketika asam yang terdapat dalam larutan bereaksi dengan basa, yang berfungsi sebagai asam sebenarnya adalah ion hidroksonium. Sebagai contoh, proton ditransferkan dari ion hidroksonium ke ion hidroksida untuk mendapatkan air.

Tampilan elektron terluar, tetapi mengabaikan elektron pada bagian yang lebih dalam:

Adalah sesuatu hal yang penting untuk mengatakan bahwa meskipun anda berbicara tentang ion hidrogen dalam suatu larutan, H+(aq), sebenarnya anda sedang membicarakan ion hidroksonium.

Permasalahan hidrogen klorida / amonia

Hal ini bukanlah suatu masalah yang berlarut-larut dengan menggunakan teori Bronsted-Lowry. Apakah anda sedang membicarakan mengenai reaksi pada keadaan larutan ataupun pada keadaan gas, amonia adalah basa karena amonia menerima sebuah proton (sebuah ion hidrogen). Hidrogen menjadi tertarik ke pasangan mandiri pada nitrogen yang terdapat pada amonia melalui sebuah ikatan koordinasi.

Jika amonia berada dalam larutan, amonia menerima sebuah proton dari ion hidroksonium:

Jika reaksi terjadi pada keadaan gas, amonia menerima sebuah proton secara langsung dari hidrogen klorida:

Cara yang lain, amonia berlaku sebagai basa melalui penerimaan sebuah ion hidrogen dari asam.

Pasangan konjugasi

Ketika hidrogen klorida dilarutkan dalam air, hampir 100% hidrogen klorida bereaksi dengan air menghasilkan ion hidroksonium dan ion klorida. Hidrogen klorida adalah asam kuat, dan kita cenderung menuliskannya dalam reaksi satu arah:

Pada faktanya, reaksi antara HCl dan air adalah reversibel, tetapi hanya sampai pada tingkatan yang sangat kecil. Supaya menjadi bentuk yang lebih umum, asam dituliskan dengan HA, dan reaksi berlangsung reversibel.

Perhatikan reaksi ke arah depan:

  • HA adalah asam karena HA mendonasikan sebuah proton (ion hidrogen) ke air.
  • Air adalah basa karena air menerima sebuah proton dari HA.

Akan tetapi ada juga reaksi kebalikan antara ion hidroksonium dan ion A:

  • H3O+ adalah asam karena H3O+ mendonasikan sebuah proton (ion hidrogen) ke ion A.
  • Ion A adalah basa karena A menerima sebuah proton dari H3O+.

Reaksi reversibel mengandung dua asam dan dua basa. Kita dapat menganggapnya berpasangan, yang disebut pasangan konjugasi.

Ketika asam, HA, kehilangan sebuah proton asam tersebut membentuk sebuah basa A. Ketika sebuah basa, A, menerima kembali sebuah proton, basa tersebut kembali berubah bentuk menjadi asam, HA. Keduanya adalah pasangan konjugasi.

Anggota pasangan konjugasi berbeda antara satu dengan yang lain melalui kehadiran atau ketidakhadiran ion hidrogen yang dapat ditransferkan.

Jika anda berfikir mengenai HA sebagai asam, maka A adalah sebagai basa konjugasinya.

Jika anda memperlakukan A sebagai basa, maka HA adalah sebagai asam konjugasinya.

Air dan ion hidroksonium juga merupakan pasangan konjugasi. Memperlakukan air sebagai basa, ion hidroksonium adalah asam konjugasinya karena ion hidroksonium memiliki kelebihan ion hidrogen yang dapat diberikan lagi.

Memperlakukan ion hidroksonium sebagai asam, maka air adalah sebagai basa konjugasinya. Air dapat menerima kembali ion hidrogen untuk membentuk kembali ion hidroksonium.

Contoh yang kedua mengenai pasangan konjugasi

Berikut ini adalah reaksi antara amonia dan air yang telah kita lihat sebelumnya:

Hal pertama yang harus diperhatikan adalah forward reaction terlebih dahulu. Amonia adalah basa karena amonia menerima ion hidrogen dari air. Ion amonium adalah asam konjugasinya – ion amonium dapat melepaskan kembali ion hidrogen tersebut untuk membentuk kembali amonia.

Air berlaku sebagai asam, dan basa konjugasinya adalah ion hidroksida. Ion hidroksida dapat menerima ion hidrogen untuk membentuk air kembali.

Perhatikanlah hal ini pada tinjauan yang lain, ion amonium adalah asam, dan amonia adalah basa konjugasinya. Ion hidroksida adalah basa dan air adalah asam konjugasinya.

Zat amfoter

Anda mungkin memperhatikan (atau bahkan mungkin juga tidak memperhatikan!) bahwa salah satu dari dua contoh di atas, air berperilaku sebagai basa, tetapi di lain pihak air berperilaku sebagai asam.

Suatu zat yang dapat berperilaku baik sebagai asam atau sebagai basa digambarkan sebagai amfoter.

Teori asam dan basa Lewis

Teori ini memperluas pemahaman anda mengenai asam dan basa.

Teori

  • Asam adalah akseptor pasangan elektron.
  • Basa adalah donor pasangan elektron.

Hubungan antara teori Lewis dan teori Bronsted-Lowry

Basa Lewis

Hal yang paling mudah untuk melihat hubungan tersebut adalah dengan meninjau dengan tepat mengenai basa Bronsted-Lowry ketika basa Bronsted-Lowry menerima ion hidrogen. Tiga basa Bronsted-Lowry dapat kita lihat pada ion hidroksida, amonia dan air, dan ketianya bersifat khas.

Teori Bronsted-Lowry mengatakan bahwa ketiganya berperilaku sebagai basa karena ketiganya bergabung dengan ion hidrogen. Alasan ketiganya bergabung dengan ion hidrigen adalah karena ketiganya memiliki pasangan elektron mandiri – seperti yang dikatakan oleh Teori Lewis. Keduanya konsisten.

Jadi bagaimana Teori Lewis merupakan suatu tambahan pada konsep basa? Saat ini belum – hal ini akan terlihat ketika kita meninjaunya dalam sudut pandang yang berbeda.

Tetapi bagaimana dengan reaksi yang sama mengenai amonia dan air, sebagai contohnya? Pada teori Lewis, tiap reaksi yang menggunakan amonia dan air menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi yang akan terhitung selama keduanya berperilaku sebagai basa.

Berikut ini reaksi yang akan anda temukan pada halaman yang berhubungan dengan ikatan koordinasi. Amonia bereaksi dengan BF3 melalui penggunaan pasangan elektron mandiri yang dimilikinya untuk membentuk ikatan koordinasi dengan orbital kosong pada boron.

Sepanjang menyangkut amonia, amonia menjadi sama persis seperti ketika amonia bereaksi dengan sebuah ion hidrogen – amonia menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi. Jika anda memperlakukannya sebagai basa pada suatu kasus, hal ini akan berlaku juga pada kasus yang lain.

Asam Lewis

Asam Lewis adalah akseptor pasangan elektron. Pada contoh sebelumnya, BF3 berperilaku sebagai asam Lewis melalui penerimaan pasangan elektron mandiri milik nitrogen. Pada teori Bronsted-Lowry, BF3 tidak sedikitpun disinggung menganai keasamannya.

Inilah tambahan mengenai istilah asam dari pengertian yang sudah biasa digunakan.

Bagaimana dengan reaksi asam basa yang lebih pasti – seperti, sebagai contoh, reaksi antara amonia dan gas hidrogen klorida?

Pastinya adalah penerimaan pasangan elektron mandiri pada nitrogen. Buku teks sering kali menuliskan hal ini seperti jika amonia mendonasikan pasangan elektron mandiri yang dimilikinya pada ion hidrogen – proton sederhana dengan tidak adanya elektron disekelilingnya.

Ini adalah sesuatu hal yang menyesatkan! anda tidak selalu memperoleh ion hidrogen yang bebas pada sistem kimia. Ion hidogen sangat reaktif dan selalu tertarik pada yang lain. Tidak terdapat ion hidrogen yang tidak bergabung dalam HCl.

Tidak terdapat orbital kosong pada HCl yang dapat menerima pasangan elektron. Mengapa, kemudian, HCl adalah suatu asam Lewis?

Klor lebih elektronegatif dibandingkan dengan hidrogen, dan hal ini berarti bahwa hidrogen klorida akan menjadi molekul polar. Elektron pada ikatan hidrogen-klor akan tertarik ke sisi klor, menghasilkan hidrogen yang bersifat sedikit positif dan klor sedikit negatif.

Pasangan elektron mandiri pada nitrogen yang terdapat pada molekul amonia tertarik ke arah atom hidrogen yang sedikit positif pada HCl. Setelah pasangan elektron mandiri milik nitrogen mendekat pada atom hidrogen, elektron pada ikatan hidrogen-klor tetap akan menolak ke arah klor.

Akhirnya, ikatan koordinasi terbentuk antara nitrogen dan hidrogen, dan klor terputus keluar sebagai ion klorida.

Hal ini sangat baik ditunjukkan dengan notasi “panah melengkung” seperti yang sering digunakan dalam mekanisme reaksi organik.

Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

Asam Kuat dan Asam Lemah

Halaman ini menjelaskan istilah kuat dan lemah yang digunakan pada asam. Sebagai bagian dari penjelasan, halaman ini juga memberikan definisi dan menerangkan apa yang dimaksud dengan pH, Ka dan pKa.

Adalah penting bahwa kamu jangan keliru memahami kata kuat dan lemah dengan istilah pekat dan encer.

Seperti yang akan anda lihat di bawah ini, kekuatan asam berhubungan dengan perbandingan asam yang dapat bereaksi dengan air untuk menghasilkan ion. Konsentrasi menjelaskan kepada anda mengenai seberapa banyak jumlah asam semula yang terlarut dalam air.

Adalah suatu kemungkinan yang sangat sempurna untuk memiliki larutan pekat dari asam lemah, atau larutan encer dari asam kuat.

Asam kuat

Penjelasan istilah “asam kuat”

Kita akan menggunakan definisi Bronsted-Lowry mengenai asam.

Ketika asam dilarutkan dalam air, sebuah proton (ion hidrogen) ditransferkan ke molekul air untuk menghasilkan ion hidroksonium dan sebuah ion negatif tergantung pada asam yang anda pakai.

Pada kasus yang umum

Reaksi tersebut reversibel, tetapi pada beberapa kasus, asam sangat baik pada saat memberikan ion hidrogen yang dapat kita fikirkan bahwa reaksi berjalan satu arah. Asam 100% terionisasi.

Sebagai contoh, ketika hidrogen klorida dilarutkan dalam air untuk menghasilkan hidrogen klorida, sangat sedikit sekali terjadi reaksi kebalikan yang dapat kita tulis:

Pada tiap saat, sebenarnya 100% hidrogen klorida akan bereaksi untuk menghasilkan ion hidroksonium dan ion klorida. Hidrogen klorida digambarkan sebagai asam kuat.

Asam kuat adalah asam yang terionisasi 100% dalam larutan.

Asam kuat lain yang biasa diperoleh adalah asam sulfat dan asam nitrat.

Anda barangkali menemukan suatu persamaan untuk ionisasi yang dituliskan melalui sebuah bentuk yang disederhanakan:

Persamaan ini menunjukkan hidrogen klorida terlarut dalam air yang terpisah untuk memberikan ion hidrogen dalam larutan dan ion klorida dalam larutan.

Versi ini sering digunakan dalam pekerjaan ini hanya untuk menjadikan sesuatu terlihat lebih mudah. Jika anda menggunakannya, harus diingat bahwa air memang benar-benar terlibat, dan ketika anda menuliskan H+(aq) yang anda maksudkan sebenarnya adalah ion hidroksonium, H3O+.

Asam kuat dan pH

pH adalah ukuran konsentrasi ion hidrogen dalam larutan. Asam kuat seperti asam hidroklorida pada konsentrasi seperti yang sering anda gunakan di lab memiliki pH berkisar antara 0 sampai 1. pH yang lebih rendah, konsentrasi ion hidrogen lebih tinggi dalam larutan.

Penentuan pH

Penentuan pH asam kuat

Jika anda menentukan pH dari 0.1 mol dm-3 asam klorida. Yang anda perlukan untuk melakukannya adalah menentukan konsentrasi ion hidrogen dalam larutan terlebih dahulu, dan kemudian mengubahnya menjadi bentuk pH dengan menggunakan kalkulator.

Dengan menggunakan asam kuat hal ini sangatlah mudah.

Asam hidroklorida adalah asam kuat – terionisasi 100%. Tiap mol HCl bereaksi dengan air untuk menghasilkan 1 mol ion hidrogen dan 1 mol ion klorida.

Hal ini berarti bahwa jika konsentrasi asam adalah 0.1 mol dm-3, maka konsentrasi ion hidrogen juga 0.1 mol dm-3.

Gunakan kalkulator untuk mengubahnya ke dalam bentuk pH. Kalkulator menginginkan untuk menekan 0.1, dam kemudian tekan tombol “log”. Anda mungkin melakukannya dalam bentuk yang berbeda. anda harus menemukannya!

log10 [0.1] = -1

Tetapi pH = – log10 [0.1]

– (-1) = 1

pH asam adalah 1.

Asam lemah

Penjelasan istilah “asam lemah”

Asam lemah adalah salah satu yang tidak terionisasi seluruhnya ketika asam lemah tersebut dilarutkan dalam air.

Asam etanoat (asam asetat) adalah asam lemah yang khas. Asam etanoat bereaksi dengan air untuk menghasilkan ion hidroksonium dan ion etanoat, tetapi reaksi kebalikannya lebih baik dibandingkan dengan reaksi ke arah depan. Ion bereaksi dengan sangat mudah untuk membentuk kembali asam dan air.

Pada setiap saat, hanya sekitar 1% molekul asam etanoat yang diubah ke dalam bentuk ion. Sisanya tetap sebagai molekul asam etanoat yang sederhana.

Sebagaian besar asam organik adalah asam lemah. Hidrogen fluorida (dilarutkan dalam air untuk menghasilkan asam hidrofluorida) adalah asam anorganik lemah.

Membandingkan kekuatan asam lemah

Posisi kesetimbangan reaksi antara asam dan air bervariasi antara asam lemah yang satu dengan asam lemah yang lainnya. Selanjutnya bergeser ke arah kiri, ke sisi asam yang lebih lemah.

Tetapan disosiasi asam, Ka

anda dapat memperoleh ukuran posisi kesetimbangan dengan menuliskan tetapan kesetimbangan untuk reaksi. Tetapan yang memiliki harga lebih rendah, kesetimbangan bergeser ke arah kiri.

Disosiasi (ionisasi) asam adalah contoh reaksi homogen. Semuanya berada pada fasa yang sama – pada kasus ini, pada larutan dalam air. Karena itu anda dapat menuliskan ungkapan yang sederhana untuk tetapan kesetimbangan, Kc.

Berikut adalah kesetimbangan lagi:

anda mungkin ingin menuliskan tetapan kesetimbangan dengan:

Akan tetapi, jika anda berfikir dengan lebih hati-hati, terdapat sesuatu hal yang ganjil.

Pada bagian bawah ungkapan, anda memiliki hubungan untuk konsentrasi air dalam larutan. Hal itu bukanlah suatu masalah – kecuali jumlah tersebut sangatlah besar untuk dibandingkan dengan jumlah yang lain.

Dalam 1 dm3 larutan, terdapat sekitar 55 mol air.


Catatan: Berat 1 mol air adalah 18 g. 1 dm3 larutan mengandung kurang lebih 1000 g air. Dengan membagi angka 1000 dengan 18 diperoleh kurang lebih 55.


Jika anda memiliki asam lemah dengan konsentrasi sekitar 1 mol dm-3, dan hanya sekitar 1% asam lemah tesebut bereaksi dengan air, jumlah mol air hanya turun sekitar 0.01. Dengan kata lain, jika asam adalah lemah maka konsentrasi air tetap.

Pada kasus tersebut, tidak terdapat batasan yang luas dalam memasukan hubungan konsentrasi air ke dalam ungkapan tersebut jika hubungan konsentrasi air itu merupakan suatu variabel. Malahan, tetapan kesetimbangan yang baru didefinisikan tanpa menyertakannya. Tetapan kesetimbangan yang baru ini disebut dengan Ka.


Catatan: Istilah untuk konsentrasi air telah diabaikan. Apa yang terjadi adalah pernyataan pertama telah disusun untuk mnghasilkan Kc sebuah konstanta) yang menyatakan konsentrasi air (konstanta yang lain) pada bagian sebelah kiri. Hasil kali ionnya kemudian diberi nama Ka.


anda mungkin menemukan ungkapan Ka ditulis berbeda jika anda menuliskannya dari versi reaksi kesetimbangan yang disederhanakan:

Ungkapan ini mungkin ditulis dengan atau tanpa simbol yang menunjukkan keadaan.

Hal ini sebenarnya persis sama dengan ungkapan sebelumnya untuk Ka! Ingatlah bahwa meskipun kita sering menulis H+ untuk ion hidrogen dalam larutan, sebenarnya kita membicarakan ion hidroksonium.

Ungkapan Ka versi yang kedua tidak persis sama dengan ungkapan yang pertama, tetapi penguji anda mungkin akan menyetujuinya. Ketahuilah!

Untuk mengambil contoh tertentu, tetapan untuk disosiasi asam etanoat tepatnya ditulis sebagai:

Ungkapan Ka adalah:

Jika anda menggunakan kesetimbangan dengan versi yang lebih sederhana

ungkapan Ka adalah:

Tabel menunjukkan beberapa harga Ka untuk beberapa asam yang sederhana:

asam Ka (mol dm-3)
asam hidrofluorida 5.6 x 10-4
asam metanoat 1.6 x 10-4
asam etanoat 1.7 x 10-5
hidrogen sulfida 8.9 x 10-8

Semuanya adalah asam lemah karena harga Ka sangat kecil. Asam-asam tersebut diurutkan seiring dengan penurunan kekuatan asam – harga Ka yang diperoleh lebih kecil seiring dengan menurunnya urutan pada tabel.

Meskipun demikian, jika anda sangat tidak menyukai bilangannya, bilangan tersebut tidaklah nyata. Karena bilangan terdiri dari dua bagian, terlalu banyak untuk membicarakannya dengan cepat!

Untuk menghindari hal ini, bilangan tersebut seringkali diubah ke dalam sesuatu yang baru, bentuk yang lebih mudah, disebut pKa.

Pengantar untuk pKa

pKa memuat dengan tepat hubungan yang sama untuk Ka sebagaimana pH digunakan untuk menunjukkan konsentrasi ion hidrogen:

Jika anda menggunakan kalkuator anda pada seluruh harga Ka pada tabel di atas dan mengubahnya menjadi harga pKa anda akan memperoleh:

asam Ka (mol dm-3) pKa
asam hidrofluorida 5.6 x 10-4 3.3
asam metanoat 1.6 x 10-4 3.8
asam etanoat 1.7 x 10-5 4.8
hidrogen sulfida 8.9 x 10-8 7.1

Dengan catatan bahwa asam yang lebih lemah, memiliki harga pKa yang lebih besar. Sekarang sangat mudah untuk melihat bahwa kecenderungan mengarah pada asam yang lebih lemah seiring dengan menurunya posisi asam pada tabel.

ngatlah:

  • Harga pKa lebih rendah, asam lebih kuat.
  • Harga pKa lebih tinggi, asam lebih lemah.

Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

Tetapan Hasil Kali Ion Air, Kw

Halaman ini menjelaskan apa yang dimaksud dengan tetapan hasil kali ion air. Penjelasan tersebut meninjau pada sisi bagaimana tetapan ion bervariasi terhadap temperatur, dan bagaimana cara menentukan pH air murni pada temperatur yang berbeda.

Kw dan pKw

Pentingnya kesetimbangan dalam air

Molekul air dapat berfungsi sebagai asam ataupun basa. Salah satu molekul air (berperilaku sebagai basa) dapat menerima ion hidrogen dari yang lainnya (berperilaku sebagai asam). Hal ini akan terjadi dimana saja pada air – air menjadi tidak murni.

Terbentuk ion hidroksonium dan ion hidroksida.

Akan tetapi, ion hidroksonium merupakan asam yang sangat kuat, dan ion hidroksida adalah basa yang sangat kuat. Secepat mereka terbentuk, secepat itu pula mereka bereaksi untuk menghasilkan air kembali.

Akibat yang menguntungkan adalah dapat disusun suatu bentuk kesetimbangan.

Setiap saat, terdapat sejumlah kecil ion hidroksonium dan ion hidroksida yang luar biasa. Pada bagian bawah halaman ini selanjutnya, kita dapat menghitung konsentrasi ion hidroksonium yang ada dalam air murni. Hasil perhitungan menghasilkan konsentrasi 1.00 x 10-7 mol dm-3 pada temperatur kamar.

Kamu dapat menemukan kesetimbangan ini dituliskan dalam bentuk yang disederhanakan:

Hal ini baik untuk mengingatkan anda bahwa H+(aq) ebenarnya mengacu pada ion hidroksonium.

Pendefinisian tetapan hasil kali ion air, Kw

Kw pada dasarnya hanya tetapan untuk reaksi yang telah ditunjukan di atas. Kamu mendapatkannya dalam dua bentuk:

Berdasarkan pada kesetimbangan yang ditulis penuh . . .

. . . atau kesetimbangan yang disederhanakan:

Kamu dapat menemukan keduanya dengan atau tanpa simbol yang menunjukkan keadaan. Apapun versi yang anda ikuti, keduanya memiliki arti yang sama!

Kamu barangkali heran kenapa air tidak dituliskan pada bagian bawah ungkapan tetapan kesetimbangan tersebut. Terlalu sedikitnya jumlah air yang terionisasi pada setiap saat, maka konsentrasi air sisanya dianggap tidak berubah – tetap. Kw didefinisikan untuk menghindari pembuatan ungkapan rumit yang tidak berguna melalui pencantuman tetapan yang lain pada ungkapan tersebut.

Harga Kw

Seperti halnya tetapan kesetimbangan yang lainnya, harga Kw ervariasi menurut temperatur. Harga Kw selalu 1.00 x 10-14 mol2 dm-6 pada temperatur ruangan. Pada faktanya, harga Kw ini sedikit lebih kecil dibandingkan pada 25°C.


Satuan Kw: Kw ditemukan melalui pengkalian dua konsentrasi secara bersamaan. Keduanya memiliki satuan mol dm-3.

Perkalian mol dm-3 x mol dm-3 memberikan anda suatu satuan seperti yang dituliskan di atas.


pKw

Hubungan antara Kw dan pKw sama persis seperti hubungan antara Ka dan pKa, atau [H+] dan pH.

Harga Kw 1.00 x 10-14 mol2 dm-6 pada temperatur ruangan memberikan harga pKw 14. Cobalah penghitungan tersebut dalam kalkulator anda! Dengan catatan pKw tidak memiliki satuan.

pH air murni

Mengapa air murni memiliki pH 7?

Pertanyaan tersebut benar-benar menyesatkan! Pada faktanya, air murni hanya memiliki pH sama dengan 7 pada temperatur tertentu – temperatur yang memberikan harga Kw sebesar 1.00 x 10-14 mol2 dm-6.

Berikut ini ditunjukkan asal muasal hal tersebut terjadi:

Untuk menentukan harga pH, yang anda perlukan untuk pertama kalinya adalah menemukan konsentrasi ion hidrogen (atau konsentrasi ion hidroksonium – hal ini sama saja). Kemudian mengubahnya menjadi pH.

Dalam air murni pada temperatur ruangan harga Kw menunjukkan pada anda bahwa:

[H+] [OH] = 1.00 x 10-14

Akan tetapi pada air murni, konsentrasi ion hidrogen (ion hidroksonium) harus sebanding dengan konsentrasi ion hidroksida. Untuk setiap pembentukan ion hidrogen, juga terjadi pembentukan ion hidroksida sama halnya seperti pembentukan ion hidrogen.

Hal itu berarti bahwa anda dapat menggantikan [OH] pada ungkapan Kw dengan [H+].

[H+]2 = 1.00 x 10-14

Dengan mengakarkan harga di atas maka dihasilkan:

[H+] = 1.00 x 10-7 mol dm-3

Ubah harga [H+] ke bentuk pH:

pH = – log10 [H+]

pH = 7

Itulah awal dari harga pH 7.

Variasi pH air murni pada berbagai temperatur

Pembentukan ion hidrogen (ion hidroksonium) dan ion hidroksida dari air merupakan proses endoterm. Dengan menggunakan versi kesetimbangan yang lebih sederhana:

Reaksi sebaliknya menyerap kalor.

Menurut Prinsip Le Chatelier, jika anda melakukan perubahan pada kondisi reaksi kesetimbangan dinamis, posisi kesetimbangan bergerak melawan perubahan yang anda lakukan.

Menurut Le Chatelier, jika anda menaikkan temperatur air, kesetimbangan akan bergeser lagi ke arah temperatur yang lebih rendah. Hal ini akan terjadi melalui penyerapan kelebihan kalor.

Hal ini berarti bahwa reaksi ke depan akan lebih disukai, dan akan terbentuk lebih banyak ion hidrogen dan ion hidroksida. Akibatnya harga Kw meningkat seiring dengan peningkatan temperatur.

Tabel di bawah ini menunjukkan pengaruh temperatur pada harga Kw. Untuk setiap harga Kw, harga pH yang baru dihitung dengan menggunakan metode yang sama seperti yag terdapat di atas. Hal ini akan berguna jika anda mengecek sendiri harga pH tersebut.

T (°C) Kw (mol2 dm-6) pH
0 0.114 x 10-14 7.47
10 0.293 x 10-14 7.27
20 0.681 x 10-14 7.08
25 1.008 x 10-14 7.00
30 1.471 x 10-14 6.92
40 2.916 x 10-14 6.77
50 5.476 x 10-14 6.63
100 51.3 x 10-14 6.14

anda dapat melihat bahwa harga pH air murni menurun seiring dengan kenaikan temperatur.

Peringatan!

Jika harga pH menurun seiring dengan kenaikan temperatur, apakah hal ini berarti bahwa air menjadi lebih asam pada temperatur yang lebih tinggi? TIDAK!

Larutan akan bersifat asam jika kelebihan ion hidrogen dibandingkan ion hidroksida. Pada kasus air murni, keduanya selalu memiliki jumlah yang sama antara ion hidrogen dan ion hidroksida. Hal ini berarti bahwa air tetap netral – kecuali jika pH-nya berubah.

Masalahnya adalah kita sudah sangat akrab dengan pH 7 air murni, yang lainnya terasa sedikit aneh. Harus di ingat bahwa anda menghitung harga pH netral dari Kw. Jika pH berubah, maka harga pH netral juga berubah secara beriringan.

Pada temperatur 100°C, pH air murni adalah 6.14. Harga tersebut merupakan titik netral pada temperatur tinggi. Larutan dengan pH 7 pada temperatur ini sedikit bersifat basa karena memiliki harga pH sedikit lebih tinggi daripada harga netral 6.14.

Hal yang sama, anda dapat membantah bahwa larutan dengan pH 7 pada 0°C adalah sedikit asam, karena harga pH-nya sedikit lebih rendah dibandingkan harga netral 7.47 pada temperatur tersebut.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

Basa Kuat dan Basa Lemah

Halaman ini menjelaskan istilah kuat dan lemah yang diterapkan pada basa. Sebagai bagian dari penjelasan, halaman ini juga mendefinisikan dan menjelaskan Kb dan pKb.

Kita akan menggunakan definisi Bronsted-Lowry mengenai basa yaitu zat yang menerima ion hidrogen (proton).

Cara yang biasa untuk membandingkan kekuatan basa adalah melihat sejauh mana basa tersebut menghasilkan ion hidroksida dalam larutan. Hal ini mungkin terjadi karena basa tersebut mengandung ion hidroksida, atau karena basa tersebut mengambil ion hidrogen dari molekul air untuk menghasikan ion hidroksida.

Basa kuat

Penjelasan istilah “basa kuat”

Basa kuat adalah sesuatu seperti natrium hidroksida atau kalium hidroksida yang bersifat ionik. Kamu dapat memperkirakan senyawa tersebut terpisah 100% menjadi ion logam dan ion hidroksida dalam larutan.

Tiap mol natrium hidroksida larut untuk menghasilkan satu mol ion hidroksida dalam larutan.

Beberapa basa kuat seperti kalsium hidroksida sangat tidak larut dalam air. Hal itu bukan suatu masalah – kalsium hidroksida tetap terionisasi 100% menjadi ion kalsium dan ion hidroksida. Kalsium hidroksida tetap dihitung sebagai basa kuat karena kalsium hidroksida 100% terionisasi.

Penentuan pH basa kuat

Ingat bahwa:

Karena pH merupakan pengukuran konsentrasi ion hidrogen, bagaimana suatu larutan yang mengandung ion hidroksida dapat memiliki harga pH? Untuk memahami hal ini, kamu perlu mengetahui tentang hasil kali ion air.

Apapun itu jika merupakan air, dapat disusun suatu kesetimbangan. Dengan menggunakan versi kesetimbangan yang disederhanakan:

Melalui adanya kelebihan ion hidroksida dari, katakanlah, natrium hidroksida, masih terdapat kesetimbangan, akan tetapi posisi kesetimbangan telah bergeser ke arah kiri menurut Prinsip Le Chatelier.

Terdapat ion hidrogen yang jauh lebih sedikit dibandingkan dalam air murni, akan tetapi masih terdapat ion hidrogen. pH ditentukan melalui konsentrasi ion hidrogen tersebut.

Skema metode penentuan pH basa kuat

  • Tentukan konsentrasi ion hidroksida.
  • Gunakan Kw untuk menentukan konsentrasi ion hidrogen.
  • Ubahlah konsentrasi ion hidrogen ke bentuk pH.

Contoh

Untuk menentukan pH 0.500 mol dm-3 arutan natrium hidroksida:

Karena natrium hidroksida bersifat ionik, tiap mol natrium hidroksida memberikan jumlah mol ion hidroksida yang sama dalam larutan.

[OH] = 0.500 mol dm-3

Sekarang anda dapat menggunakan harga Kw pada temperatur larutan. Biasanya menggunakan 1.00 x 10-14 mol2 dm-6.

[H+] [OH] = 1.00 x 10-14

Hal ini benar apakah air tersebut murni atau tidak. Pada kasus ini anda memiliki harga konsentrasi ion hidroksida. Substitusi konsentrasi ion hidroksida memberikan:

[H+] x 0.500 = 1.00 x 10-14

Jika anda memecahkan harga untuk [H+], dan kemudian mengubahmya pada pH, anda memperoleh pH 13.7.

Basa lemah

Penjelasan istilah “basa lemah”

Amonia adalah basa lemah yang khas. Sudah sangat jelas amonia tidak mengandung ion hidroksida, tetapi amonia bereaksi dengan air untuk menghasilkan ion amonium dan ion hidroksida.

Akan tetapi, reaksi berlangsung reversibel, dan pada setiap saat sekitar 99% amonia tetap ada sebagai molekul amonia. Hanya sekitar 1% yang menghasilkan ion hidroksida.

Basa lemah adalah salah satu yang tidak berubah seluruhnya menjadi ion hidroksida dalam larutan.

Membandingkan kekuatan basa dalam larutan: Kb

Ketika basa lemah bereaksi dengan air, posisi kesetimbangan bervariasi antara basa yang satu dengan basa yang lain. Selanjutnya bergeser ke kiri, ke basa yang lebih lemah.

anda dapat memperoleh pengukuran posisi kesetimbangan melalui penulisan tetapan kesetimbangan untuk reaksi. Harga tetapan yang lebih rendah, kesetimbangan lebih bergeser ke arah kiri.

Pada kasus ini tetapan kesetimbangan disebut dengan Kb. Kb didefinisikan sebagai:

pKb

Hubungan antara Kb dan pKb persis sama seperti istilah “p” yang lain pada topik ini:

Tabel menunjukkan beberapa harga Kb dan pKb untuk beberapa basa lemah.

base Kb (mol dm-3) pKb
C6H5NH2 4.17 x 10-10 9.38
NH3 1.78 x 10-5 4.75
CH3NH2 4.37 x 10-4 3.36
CH3CH2NH2 5.37 x 10-4 3.27

Seiring dengan menurunnya posisi basa pada tabel, harga Kb naik. Hal ini berarti bahwa basa menjadi lebih kuat.

Seiring dengan didapatkannya Kb yang lebih besar, pKb menjadi lebih kecil. Harga pKb yang lebih rendah, basa lebih kuat.

Hal ini persis sejalan dengan hubungan untuk asam, pKa – harga yang lebih kecil, asam lebih kuat.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

Kurva pH (Titrasi)

Halaman ini menggambarkan bagaimana perubahan pH selama berlangsungnya berbagai titrasi asam-basa.

Titik ekivalen suatu titrasi

Pemisahan beberapa istilah yang membingungkan

Ketika kamu menyelesaikan sebuah titrasi asam-basa yang sederhana, kamu menggunakan suatu indikator untuk memberitahukanmu ketika kamu memiliki perbandingan yang tepat dari asam dan basa yang dicampurkan untuk saling “menetralkan” satu sama lain. Ketika terjadi perubahan warna indikator, keadaan ini sering digambarkan sebagai titik akhir titrasi.

Pada dunia nyata, perubahan warna terjadi ketika kamu mencampurkan dua larutan secara bersamaan pada perbandingan persamaan yang tepat. Pencampuran tersebut dikenal dengan titik ekivalen.

Sebagai contoh, jika anda mentitrasi larutan natrium hidroksida dengan asam hidroklorida, antara konsentrasi 1 mol dm-3, 25 cm3 larutan natrium hidroksida akan tepat sama dengan volume dari asam – karena keduanya bereaksi 1 : 1 sesuai dengan persamaan.

Ini adalah pemisalan yang khas, hal ini juga dapat disebut dengan titik netral titrasi, karena larutan natrium klorida memiliki pH 7.

Tetapi hal ini tidak perlu benar untuk semua garam yang mungkin anda dapatkan.

Sebagai contoh, jika anda mentitrasi larutan amonia dengan asam hidroklorida, anda akan memperoleh amonium klorida yang terbentuk. Ion amonium sedikit bersifat asam, dan karena itu amonium klorida murni memiliki pH sedikit asam.

Hal itu berarti bahwa pada titik ekivalen (titik dimana anda memiliki campuran larutan dengan perbandingan yang benar berdasarkan pada persamaan), larutan tidak benar-benar netral. Penggunaan istilah “titik netral” pada konteks ini akan sedikit membingungkan.

Demikian pula halnya, jika anda mentitrasi larutan natrium hidroksida dengan asam etanoat, pada titik ekivalen natrium etanoat murni yang terbentuk memiliki pH sedikit basa karena ion etanoat bersifat sedikit basa.

Ringkasan:

  • Istilah “titik netral” sebaiknya dihindari.
  • Istilah “titik ekivalen” berarti bahwa larutan telah tercampur dengan perbandingan yang tepat sesuai dengan persamaan.
  • The term “titik akhir” adalah ketika indikator berubah warna. Seperti yang akan anda lihat pada bagian indikator, istilah ini tidak persis sama dengan titik ekivalen.

Kurva pH sederhana

Semua kurva titrasi berikut berdasarkan pada asam dan basa yang memiliki konsentrasi 1 mol dm-3. Pada tiap kasus, anda memulainya dengan 25 cm3 dengan salah satu larutan pada labu, dan larutan yang lainnya pada buret.

Meskipun biasanya anda mengalirkan asam dari buret pada basa yang ada dalam labu, anda mungkin perlu mengetahui tentang kurva titirasi untuk penambahan tersebut dalam cara yang lain sepanjang hal itu memungkinkan. Kurva versi alternatif telah digambarkan pada sebagian besar kasus.

Kurva titrasi untuk asam kuat vs basa kuat

Kita akan menganmbil asam hidroklorida dan natrium hidroksida sebagai asam kuat dan basa kuat.

Mengalirkan asam pada basa

anda dapat melihat bahwa pH hanya menurun dalam jumlah yang sangat sedikit sekali sampai mendekati titik ekivalen. Kemudian kurva tersebu melonjak turun dengan sangat curam. Jika anda menghitung harganya, penurunan pH terjadi dari 11.3 ketika anda menambahkan 24.9 cm3 sampai 2.7 ketika anda menambahkan 25.1 cm3.

Mengalirkan basa pada asam

Kurva ini sama dengan kurva sebelumnya terkecuali, tentunya, dimulai dengan pH rendah dan meningkat seiring dengan penambahan larutan natriun hidroksida yang anda lakukan.

Sekali lagi, pH tidak berubah drastis sampai anda mendekati titik ekivalen. Kemudian kurva tersebut meningkat dengan sangat tajam.

Kurva titrasi untuk asam kuat vs basa lemah

Kali ini kita akan menggunakan asam hidroklorida sebagai asam kuat dan larutan amonia sebagai basa lemah.

Mengalirkan asam pada basa

Karena anda memiliki basa lemah, permulaan kurva sangat jelas berbeda. Bagaimanapun, sekali anda mendapatkan kelebihan asam, kurva pada dasarnya sama seperti sebelumnya.

Pada bagian permulaan kurva, pH menurun dengan cepat seiring dengan penambahan asam, tetapi kemudian kurva segera berubah dengan tingkat kecuraman yang berkurang. Hal ini karena terbentuk larutan penyangga – sebagai akibat dari kelebihan amonia dan pembentukan amonium klorida.

Harus diperhatikan bahwa titik ekivalen sekarang sedikit bersifat asam (sedikit lebih kecil daripada pH 5), karena amonium klorida murni tidak netral. Karena itu, titik ekivalen tetap turun sedikit curam pada kurva. Hal itu akan menjadi sangat penting dalam pemilihan indikator yang tepat.

Mengalirkan basa pada asam

Pada bagian permulaan titrasi ini, anda memiliki kelebihan asam hidroklorida. Bentuk kurva akan sama dengan ketika anda memiliki kelebihan asam pada permulaan titrasi yang menggunakan larutan natrium hidroksida pada asam.

Ini hanya terjadi setelah titik ekivalen yang mana menjadi sesuatu yang berbeda.

Larutan penyangga yang terbentuk mengandung kelebihan amonia dan amonium klorida. Larutan penyangga ini menahan kenaikan pH yang sangat besar – tidak akan terjadi kenaikan yang sangat besar lagi. Karena amonia hanya basa lemah.

Kurva titirasi untuk asam lemah vs basa kuat

Kita akan mengambil asam etanoat dan natrium hidroksida sebagai asam lemah dan basa kuat.

Mengalirkan asam pada basa

Untuk bagian pertama dari gambar, anda memiliki kelebihan natrium hidroksida. Kurva akan tepat sama dengan ketika anda menambahkan asam hidroklorida pada natrium hidroksida. Sekali saja ada kelebihan asam, maka akan terjadi suatu hal yang berbeda.

Setelah titik ekivalen anda memiliki larutan penyangga yang mengandung natrium etanoat dan asam etanoat. Larutan penyangga ini menahan penurunan pH yang drastis.

Mengalirkan alkali pada asam

Permulaan gambar menunjukkan kenaikan pH yang relatif cepat tetapi mereda seiring dengan pembentukan larutan penyangga yang mengandung asam etanoat dan natrium etanoat. Setelah melewati titik ekivalen (ketika terjadi kelebihan natrium hidroksida) kurva sama seperti pada bagian akhir gambar HCl-NaOH.

Kurva titrasi untuk asam lemah vs basa lemah

Contoh yang biasa untuk kurva titrasi asam lemah dan basa lemah adalah asam etanoat dan amonia.

Hal ini juga terjadi karena keduanya bersifat lemah – pada kasus tersebut, titik ekivalen kira-kira terletak pada pH 7.

Mengalirkan asam pada basa

Gambar ini hanyalah penggabungan gambar yang telah anda lihat. Sebelum titik ekivalen sama seperti kasus amonia – HCl. Setelah titik ekivalen seperti bagian akhir kurva asam etanoat – NaOH.

Perhatian bahwa kurva tersebut sedikit tidak curam pada gambar ini. Malahan, terdapat sesuatu yang dikenal dengan “titik infleksi”. Kecuraman yang berkurang berarti bahwa sulit melakukan titrasi antara asam lemah vs basa lemah.

Ringkasan kurva yang penting

Normalnya anda melakukan titrasi dengan menambahkan asam pada basa. Berikut ini adalah versi turunan gambar yang digambarkan di atas, karena itu anda dapat melihatnya secara keseluruhan.

Kurva titirasi yang lebih rumit

Penambahan asam hidroklorida pada larutan natrium karbonat

Persamaan keseluruhan untuk reaksi antara larutan natrium karbonat dan asam kloroda encer adalah:

Jika anda memiliki dua larutan yang memiliki konsentrasi yang sama, anda akan menggunakan dua kali volume asam klorida untuk mencapai titk ekivalen – karena rasio 1 : 2 pada persamaan.

Andaikata anda memulainya dengan 25 cm3 larutan natrium karbonat, dan kedua larutan memiliki konsentrasi yang sama sebesar 1 mol dm-3. Hal itu berarti bahwa anda akan mengira enurunan yang curam pada kurva titrasi setelah anda menambahkan 50 cm3 asam.

Gambar yang sebenarnya akan terlihat seperti ini:

Gambarnya lebih rumit dibandingkan dengan gambar yang dapat anda fikirkan – dan sesuatu yang aneh terjadi selama titrasi.

anda mengira bahwa karbonat menghasilkan karbon dioksida ketika anda menambahkan asam kepadanya, tetapi pada bagian permulaan titrasi, hal itu tidak memberikan karbon dioksida secara keseluruhan.

Kemudian – segera setelah anda mendapatkan titik setengah titrasi – tiba-tiba banyak sekali dihasilkan karbon dioksida.

Gambar menunjukkan dua titik akhir – titik akhir yang satu terletak pada pH 8.3 (lebih sedikit dibandingkan titik infleksi), dan titik akhir yang kedua terletak pada sekitar pH 3.7. Reaksi yang terjadi dapat dilihat dengan jelas terjadi pada dua bagian yang berbeda.

Pada bagian pertama, seluruh bagian A pada diagram, natrium karbonat bereaksi dengan asam menghasilkan natrium hidrogenkarbonat:

Anda dapat melihat bahwa reaksi yang terjadi tidak menghasilkan sedikit pun karbon dioksida.

Pada bagian yang kedua, natrium hidrogenkarbonat yang dihasilkan bereaksi dengan asam – menghasilkan CO2 dalam jumlah yang banyak.

Reaksi tersebut berakhir pada bagian B pada gambar.

Hal ini memungkinkan untuk mengambil kedua titik akhir tersebut melalui pemilihan indikator dengan hati-hati. Bagian ini dijelaskan pada halaman terpisah yang menjelaskan tentang indikator.

Penambahan natrium hidroksida pada asam etanadioat encer

Asam etanadioat lebih dahulu dikenal dengan asam oksalat. Asam etanadioat adalah asam diprotik, yang berarti bahwa asam etanadioat memberikan 2 proton (ion hidrogen) pada basa. Asam yang lain yang dapat memberikan satu proton (seperti HCl) dikenal dengan asam monopritik.

Reaksi dengan natrium hidrosida mengambil dua tahapan karena satu ion hidrogen lebih mudah dihilangkan dibandingkan dengan ion hidrogen yang lainnya. Kedua reaksi tersebut berturut-turut adalah:

Jika anda mengalirkan larutan natrium hidroksida pada larutan asam, kurva pH menunjukkan titik akhir antara kedua reaksi tersebut.

Kurva berlaku untuk reaksi antara natrium hidroksida dan larutan asam etanadioat yang memiliki konsentrasi sebanding.
Gunakan fasilitas pencarian kata dibawah ini untuk mencari kata di chem-is-try.org

7 Tanggapan to “39. ASAM BASA”

  1. junianataslima Says:

    thanks a lot sir for helping me study 🙂

  2. gisnawirdya Says:

    makasih pak atas info nya, ini dapat membantu sya dalam banyak hal

  3. devydestiani Says:

    trimakasih Pak atas ilmu yang telah bapak berikan 🙂

  4. selvyanyayu Says:

    terima kasih pak atas informasinya, info ini sangat membantu sekali dalam proses apapun.

  5. indriyanabilla Says:

    thank’s pak isi materinya baik 🙂

  6. putudarmawan Says:

    terima ksih infonya pak, semoga berguna ..

  7. Desi Riskyani ( Sepdes ) Says:

    pak, apa yang bapak berikan sngat berguna untuk saya dan bisa saya pelajari lagi
    mksh pak 🙂

Tinggalkan komentar